Duke Mathematical Journal

Finite group actions on C*-algebras with the Rohlin property, I

Masaki Izumi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Basic properties of finite group actions with the Rohlin property on unital C*-algebras are investigated. A characterization of finite group actions with the Rohlin property on the Cuntz algebra 02 is given in terms of central sequences, which may be considered as an equivariant version of E. Kirchberg and N. C. Phillips's characterization of 02 . A large class of symmetries on 02 are classified in terms of the fixed-point algebras for conjugacy and the crossed products for cocycle conjugacy. Model actions of symmetries of 02 are constructed for given K-theoretical invariants.

Article information

Duke Math. J., Volume 122, Number 2 (2004), 233-280.

First available in Project Euclid: 14 April 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L40: Automorphisms 46L55: Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]
Secondary: 46L35: Classifications of $C^*$-algebras 46L80: $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]


Izumi, Masaki. Finite group actions on C * -algebras with the Rohlin property, I. Duke Math. J. 122 (2004), no. 2, 233--280. doi:10.1215/S0012-7094-04-12221-3. https://projecteuclid.org/euclid.dmj/1081971768

Export citation


  • D. H. Bisch, On the existence of central sequences in subfactors, Trans. Amer. Math. Soc. 321 (1990), 117–128.
  • B. Blackadar, Symmetries of the CAR algebra, Ann. of Math. (2) 131 (1990), 589–623.
  • ––––, $K$-Theory for Operator Algebras, 2nd ed., Math. Sci. Res. Inst. Publ. 5, Cambridge Univ. Press, Cambridge, 1998.
  • ––––, talk at the Fields Institute, Waterloo, Canada, December 1994.
  • B. Blackadar, A. Kumjian, and M. Rørdam, Approximately central matrix units and the structure of noncommutative tori, $K$-Theory 6 (1992), 267–284.
  • O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, “On the classification of inductive limits of inner actions of a compact group” in Current Topics in Operator Algebras (Nara, Japan, 1990), World Sci., River Edge, N.J., 1991, 13–24.
  • O. Bratteli and A. Kishimoto, Trace scaling automorphisms of certain stable AF algebras, II, Q. J. Math. 51 (2000), 131–154.
  • O. Bratteli, E. Størmer, A. Kishimoto, and M. Rørdam, The crossed product of a UHF algebra by a shift, Ergodic Theory Dynam. Systems 13 (1993), 615–626.
  • L. G. Brown, Semicontinuity and multipliers of $C^*$-algebras, Canad. J. Math. 40 (1988), 865–988.
  • A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), 383–419.
  • –. –. –. –., Periodic automorphisms of the hyperfinite factor of type $\mathrmII_1$, Acta Sci. Math. (Szeged) 39 (1977), 39–66.
  • –. –. –. –., An analogue of the Thom isomorphism for crossed products of a $C^*$-algebra by an action of $\mathbbR$, Adv. in Math. 39 (1981), 31–55.
  • J. Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185.
  • –. –. –. –., $K$-theory for certain $C^*$-algebras, Ann. of Math. (2) 113 (1981), 181–197.
  • J. Cuntz and D. E. Evans, Some remarks on the $C^*$-algebras associated with certain topological Markov chains, Math. Scand. 48 (1981), 235–240.
  • J. Cuntz and W. Krieger, A class of $C^*$-algebras and topological Markov chains, Invent. Math. 56 (1980), 251–268. \MR0561974
  • E. G. Effros, Dimensions and $C^*$-Algebras, CBMS Reg. Conf. Ser. Math. 46, Conf. Board Math. Sci., Washington, D.C., 1981.
  • G. A. Elliott, On the classification of $C^*$-algebras of real rank zero, J. Reine Angew. Math. 443 (1993), 179–219.
  • G. A. Elliott and M. Rørdam, Classification of certain infinite simple $C^*$-algebras, II, Comment. Math. Helv. 70 (1995), 615–638.
  • G. A. Elliott and H. Su, $K$-theoretic classification for inductive limit $Z_2$ actions on AF algebras, Canad. J. Math. 48 (1996), 946–958.
  • D. E. Evans and A. Kishimoto, Trace scaling automorphisms of certain stable AF algebras, Hokkaido Math. J. 26 (1997), 211–224.
  • D. E. Evans and H. Su, $K$-theoretic classification for certain $\mathbbZ_2$ actions on inductive limits of Cuntz algebras, preprint, 1993.
  • Th. Fack and O. Maréchal, Sur la classification des symétries des $C^*$-algèbres UHF, Canad. J. Math. 31 (1979), 496–523.
  • –. –. –. –., Sur la classification des automorphismes périodiques des $C^*$-algèbres UHF, J. Funct. Anal. 40 (1981), 267–301.
  • P. Goldstein, Classification on canonical $Z_2$-actions on $\mathcalO_\infty$, preprint.
  • ––––, $K$-theoretic classification of canonical $Z_2$-actions on Cuntz-Krieger algebras, preprint.
  • D. Handelman and W. Rossmann, Product type actions of finite and compact groups, Indiana Univ. Math. J. 33 (1984), 479–509.
  • –. –. –. –., Actions of compact groups on AF $C^*$-algebras, Illinois J. Math. 29 (1985), 51–95.
  • R. H. Herman and V. F. R. Jones, Period two automorphisms of $\mathrmUHF$ $C^*$-algebras, J. Funct. Anal. 45 (1982), 169–176.
  • –. –. –. –., Models of finite group actions, Math. Scand. 52 (1983), 312–320.
  • R. H. Herman and A. Ocneanu, Stability for integer actions on UHF $C^*$-algebras, J. Funct. Anal. 59 (1984), 132–144.
  • S. Imai and H. Takai, On a duality for $C^*$-crossed products by a locally compact group, J. Math. Soc. Japan 30 (1978), 495–504.
  • M. Izumi, “The Rohlin property for automorphisms of $C^*$-algebras” in Mathematical Physics in Mathematics and Physics (Siena, Italy, 2000), Fields Inst. Commun. 30, Amer. Math. Soc., Providence, 2001, 191–206.
  • –. –. –. –., Inclusions of simple $C^*$-algebras, J. Reine Angew. Math. 547 (2002), 97–138.
  • J. A. Jeong, K. Kodaka, and H. Osaka, Purely infinite simple $C^*$-crossed products, II, Canad. Math. Bull. 39 (1996), 203–210.
  • V. F. R. Jones, Actions of finite groups on the hyperfinite type $\rm II\sb1$ factor, Mem. Amer. Math. Soc. 28 (1980), no. 237.
  • E. Kirchberg, The classification of purely infinite $C^*$-algebras using Kasparov's theory, preprint, 1994, to appear in Fields Inst. Commun.
  • E. Kirchberg and N. C. Phillips, Embedding of exact $C^*$-algebras in the Cuntz algebra $\mathcalO_2$, J. Reine Angew. Math. 525 (2000), 17–53.
  • A. Kishimoto, On the fixed point algebra of a UHF algebra under a periodic automorphism of product type, Publ. Res. Inst. Math. Sci. 13 (1977/78), 777–791.
  • –. –. –. –., Actions of finite groups on certain inductive limit $C^*$-algebras, Internat. J. Math. 1 (1990), 267–292.
  • –. –. –. –., Automorphisms of $\mathrmA\mathbfT$ algebras with the Rohlin property, J. Operator Theory 40 (1998), 277–294.
  • –. –. –. –., Unbounded derivations in AT algebras, J. Funct. Anal. 160 (1998), 270–311.
  • A. Kishimoto and A. Kumjian, “Crossed products of Cuntz algebras by quasi-free automorphisms” in Operator Algebras and Their Applications (Waterloo, Ontario, Canada, 1994/1995), Fields Inst. Commun. 13, Amer. Math. Soc., Providence, 1997, 173–192.
  • H. Lin, An Introduction to the Classification of Amenable $C^*$-Algebras, World Sci., River Edge, N.J., 2001.
  • ––––, Classification of simple $C^*$-algebras of tracial topological rank zero, preprint.
  • M. H. Mann, I. Raeburn, and C. E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46 (1992), 225–243.
  • D. McDuff, Central sequences and the hyperfinite factor, Proc. London Math. Soc. (3) 21 (1970), 443–461.
  • Y. Nakagami and M. Takesaki, Duality for Crossed Products of von Neumann Algebras, Lecture Notes in Math. 731, Springer, Berlin, 1979.
  • H. Nakamura, Aperiodic automorphisms of nuclear purely infinite simple $C^*$-algebras, Ergodic Theory Dynam. Systems 20 (2000), 1749 –1765.
  • A. Ocneanu, Actions of Discrete Amenable Groups on von Neumann Algebras, Lecture Notes in Math. 1138, Springer, Berlin, 1985.
  • G. K. Pedersen, $C^*$-Algebras and Their Automorphism Groups, London Math. Soc. Monogr. 14, Academic Press, London, 1979.
  • N. C. Phillips, A classification theorem for nuclear purely infinite simple $C^*$-algebras, Doc. Math. 5 (2000), 49–114.
  • M. Pimsner and D. Voiculescu, Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^*$-algebras, J. Operator Theory 4 (1980), 93–118.
  • M. Rørdam, Classification of inductive limits of Cuntz algebras, J. Reine Angew. Math. 440 (1993), 175–200.
  • M. Rørdam and E. Størmer, Classification of Nuclear $C^*$-algebras: Entropy in Operator Algebras, Encyclopaedia Math. Sci. 126, Operator Algebras and Non-commutative Geometry 7, Springer, Berlin, 2001.
  • J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor, Duke Math. J. 55 (1987), 431–474.
  • C. Schochet, Topological methods for $C^*$-algebras, II: Geometry resolutions and the Künneth formula, Pacific J. Math. 98 (1982), 443–458.
  • –. –. –. –., Topological methods for $C^*$-algebras, IV: Mod $p$ homology, Pacific J. Math. 114 (1984), 447–468.
  • H. Su, $K$-theoretic classification for certain inductive limit $\mathbbZ_2$ actions on real rank zero $C^*$-algebras, Trans. Amer. Math. Soc. 348 (1996), 4199–4230.
  • C. E. Sutherland, Cohomology and extensions of von Neumann algebras, II, Publ. Res. Inst. Math. Sci. 16 (1980), 135–174.
  • H. Takai, On a duality for crossed products of $C^*$-algebras, J. Funct. Anal. 19 (1975), 25–39.