Duke Mathematical Journal

Projective normality of complete symmetric varieties

Rocco Chirivì and Andrea Maffei

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove that in characteristic zero the multiplication of sections of line bundles generated by global sections on a complete symmetric variety X= G/H ¯ is a surjective map. As a consequence, the cone defined by a complete linear system over X or over a closed G -stable subvariety of X is normal. This gives an affirmative answer to a question raised by Faltings in [11]. A crucial point of the proof is a combinatorial property of root systems.

Article information

Source
Duke Math. J., Volume 122, Number 1 (2004), 93-123.

Dates
First available in Project Euclid: 24 March 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1080137203

Digital Object Identifier
doi:10.1215/S0012-7094-04-12213-4

Mathematical Reviews number (MathSciNet)
MR2046808

Zentralblatt MATH identifier
1064.14058

Subjects
Primary: 14M17: Homogeneous spaces and generalizations [See also 32M10, 53C30, 57T15]
Secondary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17]

Citation

Chirivì, Rocco; Maffei, Andrea. Projective normality of complete symmetric varieties. Duke Math. J. 122 (2004), no. 1, 93--123. doi:10.1215/S0012-7094-04-12213-4. https://projecteuclid.org/euclid.dmj/1080137203


Export citation

References

  • D. Bayer and M. Stillman, Macaulay, version 3.1, 2000, http://math.columbia.edu/~bayer/Macaulay
  • N. Bourbaki, éléments de mathématique, fasc. 34: Groupes et algèbres de Lie, chapitres 4--6, Actualités Sci. Indust. 1337, Hermann, Paris, 1968.
  • W. Bruns, Algebras defined by powers of determinantal ideals, J. Algebra 142 (1991), 150--163.
  • W. Bruns and A. Conca, Algebras of minors, J. Algebra 246 (2001), 311--330.
  • W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math. 1327, Springer, Berlin, 1988.
  • R. Chirivì and A. Maffei, The ring of sections of a complete symmetric variety, J. Algebra 261 (2003), 310--326.
  • C. De Concini, "Normality and non normality of certain semigroups and orbit closures" to appear in Algebraic Transformation Groups and Algebraic Varieties, Encyclopaedia Math. Sci. 132, Springer, New York, 2004.
  • C. De Concini, D. Eisenbud, and C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), 129--165.
  • C. De Concini and C. Procesi, "Complete symmetric varieties" in Invariant Theory (Montecatini, Italy, 1982), Lecture Notes in Math. 996, Springer, Berlin, 1983, 1--44.
  • C. De Concini and T. A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), 273--300.
  • G. Faltings, Explicit resolution of local singularities of moduli-spaces, J. Reine Angew. Math. 483 (1997), 183--196.
  • R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • S. Helgason, A duality for symmetric spaces with applications to group representations, Adv. Math. 5 (1970), 1--154.
  • --------, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure Appl. Math. 80, Academic Press, New York, 1978.
  • S. S. Kannan, Projective normality of the wonderful compactification of semisimple adjoint groups, Math. Z. 239 (2002), 673--682.
  • M. A. A. Van Leeuwen, A. M. Cohen, and B. Lisser, LiE, A package for Lie group computations, Computer Algebra Nederland, Amsterdam, 1992.
  • J. R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), 340--364.
  • T. Vust, Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Math. Soc. France 102 (1974), 317--333.