Duke Mathematical Journal

Crossed products of UHF algebras by product type actions

Ola Bratteli

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 46, Number 1 (1979), 1-23.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077313251

Digital Object Identifier
doi:10.1215/S0012-7094-79-04601-5

Mathematical Reviews number (MathSciNet)
MR523598

Zentralblatt MATH identifier
0395.46048

Subjects
Primary: 46L05: General theory of $C^*$-algebras

Citation

Bratteli, Ola. Crossed products of UHF algebras by product type actions. Duke Math. J. 46 (1979), no. 1, 1--23. doi:10.1215/S0012-7094-79-04601-5. https://projecteuclid.org/euclid.dmj/1077313251


Export citation

References

  • [1] W. Arveson, On groups of automorphisms of operator algebras, J. Functional Analysis 15 (1974), 217–243.
  • [2] H. J. Borchers, Characterization of inner $\sp*$-automorphisms of $W\sp*$-algebras, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 11–49.
  • [3] O. Bratteli, Inductive limits of finite dimensional $C\sp\ast$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195–234.
  • [4] O. Bratteli and G. A. Elliott, Structure spaces of approximately finite dimensional $C^\ast$-algebras II, To appear in Jour. Func. Anal.
  • [5] O. Bratteli and G. A. Elliott, A non-simple crossed product of a simple $C^\ast$-algebra by a properly outer automorphic action, Marseille preprint P.902, (1977), unpublished.
  • [6] O. Bratteli and G. A. Elliott, When is a $C^\ast$-crossed product simple? Contribution to the Second Japan-U.S. Seminar on $C^\ast$-Algebras and Applications to Physics, Los Angeles, 1977.
  • [7] A. Connes, Une classification des facteurs de type $\rm III$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252.
  • [8] A. Connes and M. Takesaki, The flow of weights on factors of type $\rm III$, Tôhoku Math. J. (2) 29 (1977), no. 4, 473–575.
  • [9] J. Dixmier, Sur les $C^\ast$-algèbres, Bull. Soc. Math. France 88 (1960), 95–112.
  • [10] J. Dixmier, Les $C\sp\ast$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964.
  • [11] S. Doplicher, R. Haag, and J. E. Roberts, Fields, observables and gauge transformations. II, Comm. Math. Phys. 15 (1969), 173–200.
  • [12] S. Doplicher, D. Kastler, and D. W. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1–28.
  • [13] E. C. Effros and F. Hahn, Locally compact transformation groups and $C\sp\ast$- algebras, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967.
  • [14] P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191–250.
  • [15] K. H. Hofmann and F. J. Thayer, Approximately finite dimensional $C^\ast$-algebras, Tulane University Preprint, 1977.
  • [16] A. Kishimoto and H. Takai, On the invariant $\Gamma (\alpha )$ in $C\sp*$-dynamical systems, Tôhoku Math. J. (2) 30 (1978), no. 1, 83–94.
  • [17] A. Kishimoto and H. Takai, Some remarks on $C\sp\ast$-dynamical systems with a compact abelian group, Publ. Res. Inst. Math. Sci. 14 (1978), no. 2, 383–397.
  • [18] E. C. Lance, Inner automorphisms of $\rm UHF$ algebras, J. London Math. Soc. 43 (1968), 681–688.
  • [19] J. Moffat, Connected topological groups acting on von Neumann algebras, J. London Math. Soc. (2) 9 (1974/75), 411–417.
  • [20] C. C. Moore and J. Rosenberg, Groups with $T\sb1$ primitive ideal spaces, J. Functional Analysis 22 (1976), no. 3, 204–224.
  • [21] D. Olesen, Inner$\sp\ast$-automorphisms of simple $C\sp\ast$-algebras, Comm. Math. Phys. 44 (1975), no. 2, 175–190.
  • [22] D. Olesen and G. K. Pedersen, Applications of the Connes Spectrum to $C^\ast$-dynamical systems, University of Copenhagen preprint, 1977.
  • [23] D. Olesen, G. K. Pedersen, and E. Størmer, Compact abelian groups of automorphisms of simple $C\sp*$-algebras, Invent. Math. 39 (1977), no. 1, 55–64.
  • [24] R. T. Powers, Representations of the canonical anticommutation relations, Thesis, Princeton University, 1967.
  • [25] J. E. Roberts, Cross products of von Neumann algebras by group duals, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C\sp*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAm, Rome, 1974), Academic Press, London, 1976, pp. 335–363.
  • [26] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962.
  • [27] H. Takai, On a duality for crossed products of $C\sp\ast$-algebras, J. Functional Analysis 19 (1975), 25–39.
  • [28] H. Takai, The quasi-orbit space of continuous $C\sp\ast$-dynamical systems, Trans. Amer. Math. Soc. 216 (1976), 105–113.
  • [29] M. Takesaki, Covariant representations of $C\sp\ast$-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273–303.
  • [30] M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249–310.
  • [31] A. Wulfsohn, Produit tensoriel de $C\sp\ast$-algèbres, Bull. Sci. Math. (2) 87 (1963), no. liere partie, 13–27.
  • [32] A. Wulfsohn, The primitive spectrum of a tensor product of $C\sp\ast$-algebras, Proc. Amer. Math. Soc. 19 (1968), 1094–1096.
  • [33] G. Zeller-Meier, Produits croisés d'une $C\sp\ast$-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. (9) 47 (1968), 101–239.
  • [34] G. A. Elliott, Some simple $C^\ast$-algebras constructed as crossed products with discrete outer automorphism groups, University of Copenhagen preprint 15, 1978.
  • [35] E. C. Gootman, Primitive ideals of $C\sp\ast$-algebras associated with transformation groups, Trans. Amer. Math. Soc. 170 (1972), 97–108.
  • [36] F. B. Wright, Semigroups in compact groups, Proc. Amer. Math. Soc. 7 (1956), 309–311.