Duke Mathematical Journal
- Duke Math. J.
- Volume 55, Number 2 (1987), 431-474.
The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized -functor
Jonathan Rosenberg and Claude Schochet
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 55, Number 2 (1987), 431-474.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077306030
Digital Object Identifier
doi:10.1215/S0012-7094-87-05524-4
Mathematical Reviews number (MathSciNet)
MR894590
Zentralblatt MATH identifier
0644.46051
Subjects
Primary: 46L80: $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]
Secondary: 19K33: EXT and $K$-homology [See also 55N22] 46M20: Methods of algebraic topology (cohomology, sheaf and bundle theory, etc.) [See also 14F05, 18Fxx, 19Kxx, 32Cxx, 32Lxx, 46L80, 46M15, 46M18, 55Rxx] 58G12
Citation
Rosenberg, Jonathan; Schochet, Claude. The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$ -functor. Duke Math. J. 55 (1987), no. 2, 431--474. doi:10.1215/S0012-7094-87-05524-4. https://projecteuclid.org/euclid.dmj/1077306030
References
- [1]1 S. Araki and H. Toda, Multiplicative structures in ${\rm mod}\,q$ cohomology theories. I, Osaka J. Math. 2 (1965), 71–115.Mathematical Reviews (MathSciNet): MR32:449
Zentralblatt MATH: 0129.15201
Project Euclid: euclid.ojm/1200691225 - [1]2 S. Araki and H. Toda, Multiplicative structures in ${\rm mod}\sb{q}$ cohomology theories. II, Osaka J. Math. 3 (1966), 81–120.Mathematical Reviews (MathSciNet): MR34:2003
Zentralblatt MATH: 0152.22102
Project Euclid: euclid.ojm/1200691578 - [2] M. F. Atiyah, Vector bundles and the Künneth formula, Topology 1 (1962), 245–248.Mathematical Reviews (MathSciNet): MR27:767
Zentralblatt MATH: 0108.17801
Digital Object Identifier: doi:10.1016/0040-9383(62)90107-6 - [3] L. G. Brown, Operator algebras and algebraic $K$-theory, Bull. Amer. Math. Soc. 81 (1975), no. 6, 1119–1121.Mathematical Reviews (MathSciNet): MR52:3971
Zentralblatt MATH: 0332.46038
Digital Object Identifier: doi:10.1090/S0002-9904-1975-13943-7
Project Euclid: euclid.bams/1183537428 - [4] L. G. Brown, Extensions and the structure of $C\sp*$-algebras, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C\sp*$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975), Academic Press, London, 1976, pp. 539–566.
- [5] L. G. Brown, The universal coefficient theorem for ${\mathrm Ext}$ and quasi-diagonality, Operator Algebras and Group Representations, I (Neptun, 1980), Monographs and Studies in Math., vol. 17, Pitman, London, 1984, Proc. Internat. Conf. at Neptun, Romania, 1980, pp. 60–64.
- [6] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C\sp*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324.Mathematical Reviews (MathSciNet): MR56:16399
Zentralblatt MATH: 0376.46036
Digital Object Identifier: doi:10.2307/1970999
JSTOR: links.jstor.org - [7] L. G. Brown, P. Green, and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of $C\sp*$-algebras, Pacific J. Math. 71 (1977), no. 2, 349–363.Mathematical Reviews (MathSciNet): MR57:3866
Zentralblatt MATH: 0362.46043
Project Euclid: euclid.pjm/1102811432 - [8] R. C. Busby, Double centralizers and extensions of $C\sp{\ast}$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79–99.
- [9] A. Connes, An analogue of the Thom isomorphism for crossed products of a $C\sp{\ast}$-algebra by an action of ${\bf R}$, Adv. in Math. 39 (1981), no. 1, 31–55.Mathematical Reviews (MathSciNet): MR82j:46084
Zentralblatt MATH: 0461.46043
Digital Object Identifier: doi:10.1016/0001-8708(81)90056-6 - [10] A. Connes and G. Skandalis, The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984), no. 6, 1139–1183.Mathematical Reviews (MathSciNet): MR87h:58209
Zentralblatt MATH: 0575.58030
Digital Object Identifier: doi:10.2977/prims/1195180375 - [11] J. Cuntz, A class of $C\sp{\ast}$-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for $C\sp{\ast}$-algebras, Invent. Math. 63 (1981), no. 1, 25–40.Mathematical Reviews (MathSciNet): MR82f:46073b
Zentralblatt MATH: 0461.46047
Digital Object Identifier: doi:10.1007/BF01389192 - [12] J. Cuntz, The internal structure of simple $C^{\ast}$-algebras, Operator Algebras and Applications, Part I (Kingston, Ont., 1980) ed. R. V. Kadison, Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 85–115.
- [13] J. Cuntz, On the homotopy groups of the space of endomorphisms of a $C^{\ast}$-algebra (with applications to topological Markov chains), Operator Algebras and Group Representations, I (Neptun, 1980), Monographs and Studies in Math., vol. 17, Pitman, London, 1984, Proc. Internat. Conf. at Neptun, Romania, 1980, pp. 124–137.
- [14] J. Cuntz, $K$-theory and $C^{\ast}$-algebras, Algebraic $K$-theory, Number Theory, Geometry and Analysis (Bielefeld, 1982) ed. A. Bak, Lecture Notes in Math., vol. 1046, Springer, Heidelberg and New York, 1984, Proc. Internat. Conf. at Bielefeld, 1982, pp. 55–79.Mathematical Reviews (MathSciNet): MR86d:46071
Zentralblatt MATH: 0548.46056
Digital Object Identifier: doi:10.1007/BFb0072018 - [15] R. G. Douglas, $C\sp{\ast}$-algebra extensions and $K$-homology, Annals of Mathematics Studies, vol. 95, Princeton University Press, Princeton, N.J., 1980.
- [16] T. Fack, $K$-théorie bivariante de Kasparov, Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 149–166.
- [17] T. Fack and G. Skandalis, Connes' analogue of the Thom isomorphism for the Kasparov groups, Invent. Math. 64 (1981), no. 1, 7–14.Mathematical Reviews (MathSciNet): MR82g:46113
Zentralblatt MATH: 0482.46043
Digital Object Identifier: doi:10.1007/BF01393931 - [18] D. Handelman, Extensions for AF $C\sp{\ast}$ algebras and dimension groups, Trans. Amer. Math. Soc. 271 (1982), no. 2, 537–573.
- [19] D. S. Kahn, J. Kaminker, and C. Schochet, Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (1977), no. 2, 203–224.Mathematical Reviews (MathSciNet): MR57:13921
Zentralblatt MATH: 0384.55001
Digital Object Identifier: doi:10.1307/mmj/1029001885
Project Euclid: euclid.mmj/1029001885 - [20] J. Kaminker and C. Schochet, $K$-theory and Steenrod homology: applications to the Brown-Douglas-Fillmore theory of operator algebras, Trans. Amer. Math. Soc. 227 (1977), 63–107.
- [21] G. G. Kasparov, The operator $K$-functor and extensions of $C\sp{\ast}$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719, Math. USSR Izv. 16 (1981), 513–572.
- [22] G. G. Kasparov, $K$-theory, group $C^{\ast}$-algebras, and higher signatures (conspectus), preprint, Chernogolovka, 1981.Mathematical Reviews (MathSciNet): MR1388299
Zentralblatt MATH: 0957.58020
Digital Object Identifier: doi:10.1017/CBO9780511662676.007 - [23] G. G. Kasparov, Lorentz groups: $K$-theory of unitary representations and crossed products, Dokl. Akad. Nauk SSSR 275 (1984), no. 3, 541–545.
- [24] G. G. Kasparov, Operator $K$-theory and its applications: elliptic operators, group representations, higher signatures, $C\sp \ast$-extensions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 987–1000.
- [25] A. S. Miščenko and A. T. Fomenko, The index of elliptic operators over $C^{\ast}$-algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), no. 4, 831–859, 967, Math. USSR Izv. 15 (1980), 87–117.
- [26a] M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous $C^{\ast}$-extensions of $C(X)\otimes \mathcal{K}(H)$. I, J. Operator Theory 1 (1979), no. 1, 55–108.
- [26b] M. Pimsner, S. Popa, and D. Voiculescu, Homogeneous $C^{\ast}$-extensions of $C(X)\otimes K(H)$. II, J. Operator Theory 4 (1980), no. 2, 211–249.
- [27] M. Pimsner and D. Voiculescu, $K$-groups of reduced crossed products by free groups, J. Operator Theory 8 (1982), no. 1, 131–156.
- [28] J. Rosenberg, Homological invariants of extensions of $C^{\ast}$-algebras, Operator Algebras and Applications, Part I (Kingston, Ont., 1980) ed. R. V. Kadison, Proc. Symp. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 35–75.
- [29] J. Rosenberg, The role of $K$-theory in non-commutative algebraic topology, Operator Algebras and $K$-theory (San Francisco, Calif., 1981) eds. R. G. Douglas and C. Schochet, Contemporary Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1982, pp. 155–182.
- [30] J. Rosenberg, $C\sp{\ast}$-algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983), no. 58, 197–212 (1984).Mathematical Reviews (MathSciNet): MR85g:58083
Zentralblatt MATH: 0526.53044
Digital Object Identifier: doi:10.1007/BF02953775 - [31] J. Rosenberg and C. Schochet, The classification of extensions of $C^{\ast}$-algebras, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 105–110.Mathematical Reviews (MathSciNet): MR82a:46066
Zentralblatt MATH: 0473.46047
Digital Object Identifier: doi:10.1090/S0273-0979-1981-14873-4
Project Euclid: euclid.bams/1183547855 - [32] J. Rosenberg and C. Schochet, Comparing functors classifying extensions of $C^{\ast}$-algebras, J. Operator Theory 5 (1981), no. 2, 267–282.
- [33] C. Schochet, Homogeneous extensions of $C^{\ast}$-algebras and $K$-theory I, Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 1, part 1, 715–718.Mathematical Reviews (MathSciNet): MR81i:46096
Zentralblatt MATH: 0441.46057
Digital Object Identifier: doi:10.1090/S0273-0979-1980-14803-X
Project Euclid: euclid.bams/1183546475 - [34] C. Schochet, Homogeneous extensions of $C^{\ast}$-algebras and $K$-theory II, Amer. J. Math. 105 (1983), no. 3, 595–622.Mathematical Reviews (MathSciNet): MR85e:46035
Zentralblatt MATH: 0531.46047
Digital Object Identifier: doi:10.2307/2374315
JSTOR: links.jstor.org - [35] C. Schochet, Topological methods for $C^{\ast}$-algebras II: geometry resolutions and the Künneth formula, Pacific J. Math. 98 (1982), no. 2, 443–458.Mathematical Reviews (MathSciNet): MR84g:46105b
Zentralblatt MATH: 0439.46043
Project Euclid: euclid.pjm/1102734267 - [36] C. Schochet, Topological methods for $C^{\ast}$-algebras III: axiomatic homology, Pacific J. Math. 114 (1984), no. 2, 399–445.Mathematical Reviews (MathSciNet): MR86g:46102
Zentralblatt MATH: 0491.46061
Project Euclid: euclid.pjm/1102708717 - [37] C. Schochet, Topological methods for $C^{\ast}$-algebras IV: mod $p$ homology, Pacific J. Math. 114 (1984), no. 2, 447–468.Mathematical Reviews (MathSciNet): MR86g:46103
Zentralblatt MATH: 0491.46062
Project Euclid: euclid.pjm/1102708718 - [38] G. Skandalis, On the group of extensions relative to a semifinite factor, J. Operator Theory 13 (1985), no. 2, 255–263.
- [39] G. Skandalis, Exact sequences for the Kasparov groups of graded algebras, Canad. J. Math. 37 (1985), no. 2, 193–216.Mathematical Reviews (MathSciNet): MR86d:46072
Zentralblatt MATH: 0603.46064
Digital Object Identifier: doi:10.4153/CJM-1985-013-x - [40] C. F. Bödigheimer, Splitting the Künneth sequence in $K$-theory, Math. Ann. 242 (1979), no. 2, 159–171.Mathematical Reviews (MathSciNet): MR80k:55013
Zentralblatt MATH: 0412.55003
Digital Object Identifier: doi:10.1007/BF01420413 - [41] A. Deutz, The splitting of the Künneth sequence in $K$-theory for $C^{\ast}$-algebras, Ph.D. Dissertation, Wayne State Univ., 1981.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Tensor products of spectra and localizations
Bauer, Friedrich W., Homology, Homotopy and Applications, 2001 - On Determinant Functors and $K$-Theory
Muro, Fernando, Tonks, Andrew, and Witte, Malte, Publicacions Matemàtiques, 2015 - On graded $K$-theory, elliptic operators and the functional calculus
Trout, Jody, Illinois Journal of Mathematics, 2000
- Tensor products of spectra and localizations
Bauer, Friedrich W., Homology, Homotopy and Applications, 2001 - On Determinant Functors and $K$-Theory
Muro, Fernando, Tonks, Andrew, and Witte, Malte, Publicacions Matemàtiques, 2015 - On graded $K$-theory, elliptic operators and the functional calculus
Trout, Jody, Illinois Journal of Mathematics, 2000 - Homology with local coefficients and characteristic
classes
Greenblatt, Robert, Homology, Homotopy and Applications, 2006 - Algebraic Kasparov K-theory, II
Garkusha, Grigory, Annals of K-Theory, 2016 - On the Taylor tower of relative $K$–theory
Lindenstrauss, Ayelet and McCarthy, Randy, Geometry & Topology, 2012 - The Künneth Theorem in equivariant $K$–theory for actions of a cyclic group of order $2$
Rosenberg, Jonathan, Algebraic & Geometric Topology, 2013 - Conformal Nets and KK-Theory
Carpi, Sebastiano, Conti, Roberto, and Hillier, Robin, Annals of Functional Analysis, 2013 - Calculus III: Taylor Series
Goodwillie, Thomas G, Geometry & Topology, 2003 - Motivic cell structures
Dugger, Daniel and Isaksen, Daniel C, Algebraic & Geometric Topology, 2005
