Duke Mathematical Journal
- Duke Math. J.
- Volume 54, Number 2 (1987), 679-710.
Notes on motivic cohomology
A. Beilinson, R. MacPherson, and V. Schechtman
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 54, Number 2 (1987), 679-710.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077305678
Digital Object Identifier
doi:10.1215/S0012-7094-87-05430-5
Mathematical Reviews number (MathSciNet)
MR899412
Zentralblatt MATH identifier
0632.14010
Subjects
Primary: 14F99: None of the above, but in this section
Secondary: 14A20: Generalizations (algebraic spaces, stacks) 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67] 19E99: None of the above, but in this section
Citation
Beilinson, A.; MacPherson, R.; Schechtman, V. Notes on motivic cohomology. Duke Math. J. 54 (1987), no. 2, 679--710. doi:10.1215/S0012-7094-87-05430-5. https://projecteuclid.org/euclid.dmj/1077305678
References
- [BBD] A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171.
- [B1] A. A. Beilinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238.
- [B2] A. Beilinson, Height pairings between algebraic cycles, Preprint, 1984.Mathematical Reviews (MathSciNet): MR902590
- [B3] A. A. Beilinson, Notes on absolute Hodge cohomology, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35–68.
- [Bl1] S. Bloch, Higher regulators, preprint.
- [Bl2] S. Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304.Mathematical Reviews (MathSciNet): MR88f:18010
Zentralblatt MATH: 0608.14004
Digital Object Identifier: doi:10.1016/0001-8708(86)90081-2 - [C] P. Cartier, Decomposition des polyedres: le point sur le troisieme probleme de Hilbert, Seminaire Bourbaki, Astérisque, no. 646, Juin 1984.
- [FM] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165.
- [GGL] A. M. Gabrielov, I. M. Gelfand, and M. V. Losik, Combinatorial computation of characteristic classes. I, II, Funkcional. Anal. i Priložen. 9 (1975), no. 2, 12–28; ibid. 9 (1975), no. 3, 5–26.
- [GM] I. M. Gelfand and R. D. MacPherson, Geometry in Grassmannians and a generalization of the dilogarithm, Adv. in Math. 44 (1982), no. 3, 279–312.Mathematical Reviews (MathSciNet): MR84b:57014
Zentralblatt MATH: 0504.57021
Digital Object Identifier: doi:10.1016/0001-8708(82)90040-8 - [G] H. Gillet, Riemann-Roch Theorem in Higher $K$-Theory, Advances in Math., 19.
- [HM] R. Hain and R. MacPherson, Higher logarithms, to appear.Mathematical Reviews (MathSciNet): MR1046570
Zentralblatt MATH: 0737.14014
Project Euclid: euclid.ijm/1255988272 - [K] F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984.
- [La] S. E. Landsburg, Relative cycles and algebraic $K$-theory, preprint, 1985.Mathematical Reviews (MathSciNet): MR1011551
Zentralblatt MATH: 0722.14001
Digital Object Identifier: doi:10.2307/2374815
JSTOR: links.jstor.org - [L1] S. Lichtenbaum, Values of zeta-functions at non-negative integers, Journées Arithmetiques, Springer Verlag, Noordwykinhoot, Netherlands, 1983.Zentralblatt MATH: 0591.14014
- [L2] S. Lichtenbaum, The construction of weight two arithmetic cohomology, to appear in Inventiones Math.Mathematical Reviews (MathSciNet): MR877012
Zentralblatt MATH: 0615.14004
Digital Object Identifier: doi:10.1007/BF01405097 - [Ma] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press Inc., New York, 1963.
- [Mac] R. MacPherson, The combinatorial formula of Gabrielov, Gelfand and Losik for the first Pontrjagin class, Séminaire Bourbaki, 29e année (1976/77), Lecture Notes in Math., vol. 677, Springer, Berlin, 1978, Exp. No. 497, pp. 105–124.
- [MV] R. MacPherson and K. Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), no. 2, 403–435.Mathematical Reviews (MathSciNet): MR87m:32028
Zentralblatt MATH: 0597.18005
Digital Object Identifier: doi:10.1007/BF01388812 - [M] Yu. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. (N.S.) 77 (119) (1968), 475–507.
- [MM] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264.Mathematical Reviews (MathSciNet): MR30:4259
Zentralblatt MATH: 0163.28202
Digital Object Identifier: doi:10.2307/1970615
JSTOR: links.jstor.org - [Q] D. Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 85–147. Lecture Notes in Math., Vol. 341.
- [RS] C. P. Rourke and B. J. Sanderson, $\triangle$-sets. I. Homotopy theory, Quart. J. Math. Oxford Ser. (2) 22 (1971), 321–338.Mathematical Reviews (MathSciNet): MR45:9327
Zentralblatt MATH: 0226.55019
Digital Object Identifier: doi:10.1093/qmath/22.3.321 - [So] C. Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488–550.
- [S1] A. A. Suslin, Homology of $\rm GL\sbn$, characteristic classes and Milnor $K$-theory, Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046, Springer, Berlin, 1984, pp. 357–375.Mathematical Reviews (MathSciNet): MR86f:11090a
Zentralblatt MATH: 0528.18007
Digital Object Identifier: doi:10.1007/BFb0072031 - [S2] A. A. Suslin, 1983, Lecture, Moscow.
- [Yo] Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507–576 (1960).
- [Y] B. V. Yusin, Sur les formes $S\spp,q$ apparaissant dans le calcul combinatoire de la deuxième classe de Pontriaguine par la méthode de Gabrielov, Gelfand et Losik, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 13, 641–644.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A note on Bockstein homomorphisms in local cohomology
Singh, Anurag K. and Walther, Uli, , 2012 - Motivic cohomology of the complement of hyperplane arrangements
Chatzistamatiou, Andre, Duke Mathematical Journal, 2007 - A note on bounded-cohomological dimension of discrete groups
LÖH, Clara, Journal of the Mathematical Society of Japan, 2017
- A note on Bockstein homomorphisms in local cohomology
Singh, Anurag K. and Walther, Uli, , 2012 - Motivic cohomology of the complement of hyperplane arrangements
Chatzistamatiou, Andre, Duke Mathematical Journal, 2007 - A note on bounded-cohomological dimension of discrete groups
LÖH, Clara, Journal of the Mathematical Society of Japan, 2017 - A cohomological Tamagawa number formula
Huber, Annette and Kings, Guido, Nagoya Mathematical Journal, 2011 - f-cohomology and motives over number rings
Scholbach, Jakob, Kodai Mathematical Journal, 2012 - Notes on cohomologies of ternary algebras of associative type
Ataguema, H. and Makhlouf, A., Journal of Generalized Lie Theory and Applications, 2009 - The $\mathbb{G}_m$–equivariant motivic cohomology of Stiefel varieties
Williams, Ben, Algebraic & Geometric Topology, 2013 - A note on Poincaré sums for finite groups
Ono, Takashi, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2003 - A note on secondary $K$-theory
Tabuada, Gonçalo, Algebra & Number Theory, 2016 - A Note on Lagrange's Method of Variation of Parameters
Srinivasan, Gopala Krishna, Missouri Journal of Mathematical Sciences, 2007
