Duke Mathematical Journal

Unitary representations of the Virasoro algebra

Akihiro Tsuchiya and Yukihiro Kanie

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 53, Number 4 (1986), 1013-1046.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077305361

Digital Object Identifier
doi:10.1215/S0012-7094-86-05350-0

Mathematical Reviews number (MathSciNet)
MR874679

Zentralblatt MATH identifier
0611.17005

Subjects
Primary: 17B65: Infinite-dimensional Lie (super)algebras [See also 22E65]
Secondary: 81D15

Citation

Tsuchiya, Akihiro; Kanie, Yukihiro. Unitary representations of the Virasoro algebra. Duke Math. J. 53 (1986), no. 4, 1013--1046. doi:10.1215/S0012-7094-86-05350-0. https://projecteuclid.org/euclid.dmj/1077305361


Export citation

References

  • [1] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380.
  • [2] B. L. Feĭ gin and D. B. Fuks, Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra, Funktsional. Anal. i Prilozhen. 16 (1982), no. 2, 47–63, 96, (in Russian).
  • [3] B. L. Feĭ gin and D. B. Fuks, Verma modules over a Virasoro algebra, Funktsional. Anal. i Prilozhen. 17 (1983), no. 3, 91–92, (in Russian).
  • [4] D. Friedan, Z. Qiu, and S. Shenker, Conformal invariance, unitarity, and critical exponents in two dimensions, Phys. Rev. Lett. 52 (1984), no. 18, 1575–1578, Vertex Operators in Math. & Phys. Publ. MSRI 3 (1984), 419–449.
  • [5] H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), no. 2, 480–551.
  • [6] P. Goddard, A. Kent, and D. Olive, Virasoro algebras and coset space models, Phys. Lett. B 152 (1985), no. 1-2, 88–92.
  • [7] M. Jimbo and T. Miwa, On a duality of branching rules for affine Lie algebras, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Advanced Studies in Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 17–65.
  • [8] V. G. Kac, Contravariant form for infinite dimensional Lie algebras and superalgebras, Lecture Notes Phys. 94 (1979), 441–445.
  • [9] V. G. Kac, Some problems on infinite-dimensional Lie algebras and their representations, Lie algebras and related topics (New Brunswick, N.J., 1981), Lecture Notes in Math., vol. 933, Springer, Berlin, 1982, pp. 117–126.
  • [10] V. G. Kac, Infinite-dimensional Lie algebras, Progress in Mathematics, vol. 44, Birkhäuser Boston Inc., Boston, MA, 1983.
  • [11] V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), no. 2, 125–264.
  • [12] S. Mandelstam, Dual-Resonance Models, Physics Reports 13-6, 1974, 259–353.
  • [13] A. Tsuchiya and Y. Kanie, Fock space representations of the Virasoro algebra. Intertwining operators, Publ. Res. Inst. Math. Sci. 22 (1986), no. 2, 259–327.
  • [14] M. Wakimoto, Affine Lie algebras and the Virasoro algebra I, Hiroshima Univ. preprint, 1985.