Duke Mathematical Journal

Lie groups and twistor spaces

Robert L. Bryant

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J., Volume 52, Number 1 (1985), 223-261.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 58E20: Harmonic maps [See also 53C43], etc.
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20] 53C30: Homogeneous manifolds [See also 14M15, 14M17, 32M10, 57T15]


Bryant, Robert L. Lie groups and twistor spaces. Duke Math. J. 52 (1985), no. 1, 223--261. doi:10.1215/S0012-7094-85-05213-5. https://projecteuclid.org/euclid.dmj/1077304286

Export citation


  • [1] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461.
  • [2] E. Berger, R. Bryant, and P. Griffiths, Isometric Imbedding and Rigidity, to appear in Duke Math. Journal.
  • [3] A. Borel, Les fonctions automorphes de plusieurs variables complexes, Bull. Soc. Math. France 80 (1952), 167–182.
  • [4] R. Bryant, Submanifolds and special structures on the octonians, J. Differential Geom. 17 (1982), no. 2, 185–232.
  • [5] R. Bryant, Conformal and minimal immersions of compact surfaces into the $4$-sphere, J. Differential Geom. 17 (1982), no. 3, 455–473.
  • [6] E. Calabi, Quelques applications de l'Analyse Complexe aux Surfaces d'Aire Minima, Topics in complex manifolds, Univ. Montereal, 1967.
  • [7] É. Cartan, Sur la Structure des Groupes de Transformations Finis et Continus, Thèsis, Paris, Nony, 2nd ed. Vuibert, 1933, 1984.
  • [8] E. Cartan, Œuvres complètes. Partie I. Groupes de Lie, Gauthier-Villars, Paris, 1952.
  • [9] A. M. Din and W. J. Zakrzewski, General classical solutions in the $\bf CP\spn-1$ model, Nuclear Phys. B 174 (1980), no. 2-3, 397–406.
  • [10] S. Donaldson, An application of Gauge theory to the Topology of Four-Manifolds, J. Diff. Geom., to appear.
  • [11] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68.
  • [12] J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), no. 3, 217–263.
  • [13] J. Eells and J. C. Wood, The existence and construction of certain harmonic maps, Symposia Mathematica, Vol. XXVI (Rome, 1980), Academic Press, London, 1982, pp. 123–138.
  • [14] S. Erdem and J. C. Wood, On the construction of harmonic maps into a Grassmannian, J. London Math. Soc. (2) 28 (1983), no. 1, 161–174.
  • [15] J. F. Glazebrook, Isotropic Harmonic Maps to Kähler Manifolds and Related Topics, Thesis, Univ. of Warwick, 1983.
  • [16] J. F. Glazebrook, The Construction of a Class of Harmonic Maps to Quaternionic Projective Spaces, preprint (preliminary version).
  • [17] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978.
  • [18] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978.
  • [19] J. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972.
  • [20] R. Penrose, Twistor algebra, J. Mathematical Phys. 8 (1967), 345–366.
  • [21] J. Ramanathan, Harmonic Maps from $S^2$ to $G_2,4$, preprint.
  • [22] J. Rawnsley, Twistor Spaces and Isotropic Harmonic Maps of Riemann surfaces,Warwick, preprint, 1983.