Duke Mathematical Journal

On long-range scattering

I. M. Sigal

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J., Volume 60, Number 2 (1990), 473-496.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35P25: Scattering theory [See also 47A40]
Secondary: 47F05: Partial differential operators [See also 35Pxx, 58Jxx] (should also be assigned at least one other classification number in section 47) 81U05: $2$-body potential scattering theory [See also 34E20 for WKB methods]


Sigal, I. M. On long-range scattering. Duke Math. J. 60 (1990), no. 2, 473--496. doi:10.1215/S0012-7094-90-06019-3. https://projecteuclid.org/euclid.dmj/1077297301

Export citation


  • [Com] M. Combescure, Long range scattering for the two-body Schrödinger equation with “Hörmander-like” potentials, Comm. Partial Differential Equations 11 (1986), no. 2, 123–165.
  • [En] V. Enss, Quantum scattering theory for two and three-body systems with potentials of short and long range, Schrödinger operators (Como, 1984) ed. S. Graffi, Lecture Notes in Math., vol. 1159, Springer, Berlin, 1985, pp. 39–176.
  • [Hö1] L. Hörmander, The existence of wave operators in scattering theory, Math. Z. 146 (1976), no. 1, 69–91.
  • [Hö2] L. Hörmander, The Analysis of Linear Partial Differential Operators IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985.
  • [IK] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), no. 1, 77–104.
  • [K1]1 H. Kitada, Scattering theory for Schrödinger operators with long-range potentials. I: Abstract theory, J. Math. Soc. Japan 29 (1977), no. 4, 665–691.
  • [K1]2 H. Kitada, Scattering Theory for Schrödinger operators with long-range potentials. II: Spectral and scattering theory, J. Math. Soc. Japan 30 (1978), no. 4, 603–632.
  • [K2] H. Kitada, Scattering theory for Schrödinger equations with time-dependent potentials of long-range type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 2, 353–369.
  • [KY]1 H. Kitada and K. Yajima, A scattering theory for time-dependent long range potentials, Duke Math. J. 49 (1982), no. 2, 341–376.
  • [KY]2 H. Kitada and K. Yajima, Remarks on our paper: “A scattering theory for time-dependent long-range potentials”, Duke Math. J. 50 (1983), no. 4, 1005–1016.
  • [M] Pl. Muthuramalingam, Spectral properties of vaguely elliptic pseudodifferential operators with momentum-dependent long-range potentials using time-dependent scattering theory, J. Math. Phys. 25 (1984), no. 6, 1881–1899, and Bielefeld preprint (1984).
  • [Pe] P. Perry, Propagation of states in dilation analytic potentials and asymptotic completeness, Comm. Math. Phys. 81 (1981), no. 2, 243–259.
  • [RS]1 M. Reed and B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.
  • [RS]2 M. Reed and B. Simon, Methods of Modern Mathematical Physics, III, Academic Press, New York, 1979.
  • [S1] Y. Saito, On the asymptotic behavior of the solutions of the Schrödinger equation $(-\Delta +Q(y)-k\sp{2})V=F$, Osaka J. Math. 14 (1977), no. 1, 11–35.
  • [S2] Y. Saito, Eigenfunction expansions for the Schrödinger operators with long-range potentials$Q(y)=O(\mid y\mid \sp{-\varepsilon })$, $\varepsilon >0$, Osaka J. Math. 14 (1977), no. 1, 37–53.
  • [Sig] I. M. Sigal, Lectures on Scattering Theory, Toronto, 1986-1987.
  • [SigSof 1] I. M. Sigal and A. Soffer, Local decay and velocity bounds for time-independent and time-dependent Hamiltonians, preprint (Caltech), 1987.
  • [SigSof 2] I. M. Sigal and A. Soffer, Asymptotic completeness of $3$- and $4$-body long-range systems, preprint.
  • [SigSof 3] I. M. Sigal and A. Soffer, Long-range many-body scattering... Invent. Math. (to appear).
  • [St] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton Univ. Press, Princeton, N.J., 1970.