Duke Mathematical Journal

Geometric bounds on the density of resonances for semiclassical problems

Johannes Sjöstrand

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 60, Number 1 (1990), 1-57.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077297139

Digital Object Identifier
doi:10.1215/S0012-7094-90-06001-6

Mathematical Reviews number (MathSciNet)
MR1047116

Zentralblatt MATH identifier
0702.35188

Subjects
Primary: 35P20: Asymptotic distribution of eigenvalues and eigenfunctions
Secondary: 35A27: Microlocal methods; methods of sheaf theory and homological algebra in PDE [See also 32C38, 58J15] 35P25: Scattering theory [See also 47A40] 47F05: Partial differential operators [See also 35Pxx, 58Jxx] (should also be assigned at least one other classification number in section 47) 58G15

Citation

Sjöstrand, Johannes. Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60 (1990), no. 1, 1--57. doi:10.1215/S0012-7094-90-06001-6. https://projecteuclid.org/euclid.dmj/1077297139


Export citation

References

  • [ACo] J. Aguilar and J. M. Combes, A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971), 269–279.
  • [BaCo] E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation analytic interactions, Comm. Math. Phys. 22 (1971), 280–294.
  • [BLeR] C. Bardos, G. Lebeau, and J. Rauch, Scattering frequencies and Gevrey $3$ singularities, Invent. Math. 90 (1987), no. 1, 77–114.
  • [BoGu] L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators, Ann. of Math. Studies, vol. 99, Princeton Univ. Press, Princeton, NJ, 1981.
  • [BrCoDu1] P. Briet, J. M. Combes, and P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit. I. Resonances free domains, J. Math. Anal. Appl. 126 (1987), no. 1, 90–99.
  • [BrCoDu2] P. Briet, J. M. Combes, and P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances, Comm. Partial Differential Equations 12 (1987), no. 2, 201–222.
  • [CF] A. Cordoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979–1005.
  • [DSc] N. Dunford and J. T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963.
  • [F] K. J. Falconer, The geometry of fractal sets, Cambridge tracts in mathematics, vol. 95, Cambridge University press, Cambridge, 1985.
  • [G] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Mém. Soc. Math. France (N.S.) (1988), no. 31, 146.
  • [GS1] C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys. 108 (1987), no. 3, 391–421.
  • [GS2] C. Gérard and J. Sjöstrand, Resonances en limite semiclassique et exposants de Lyapunov, Comm. Math. Phys. 116 (1988), no. 2, 193–213.
  • [Go] W. Goodhue, Scattering theory for hyperbolic systems with coefficients of Gevrey type, Trans. Amer. Math. Soc. 180 (1973), 337–346.
  • [HS] B. Helffer and J. Sjöstrand, Résonances en limite semiclassique, Mém. Soc. Math. France (N.S.) (1986), no. 24-25, iv+228.
  • [HMa] B. Helffer and A. Martinez, Comparaison entre les diverses notions de résonances, Helv. Phys. Acta 60 (1987), no. 8, 992–1003.
  • [Hö] L. Hörmander, The analysis of linear partial differential operators III, Grundlehren der math. wiss., vol. 274, Springer Verlag, Berlin, 1985.
  • [I1]1 M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ. 23 (1983), no. 1, 127–194.
  • [I1]2 M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles: An addendum, J. Math. Kyoto Univ. 23 (1983), no. 4, 795–802.
  • [I1]3 M. Ikawa, On the distribution of the poles of the scattering matrix for two strictly convex obstacles, Hokkaido Math. J. 12 (1983), no. 3, 343–359.
  • [I2]1 M. Ikawa, Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Preprint.
  • [I2]2 Mitsuru Ikawa, On the scattering matrix for two convex obstacles, Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press, Boston, MA, 1986, pp. 63–84.
  • [I3] M. Ikawa, Decay of solutions of the wave equations in the exterior of several convex bodies, Preprint.
  • [I4] M. Ikawa, 1988, Proc. of Japan Academy.
  • [In] A. Intissar, A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces $\bf R\sp n$, Comm. Partial Differential Equations 11 (1986), no. 4, 367–396.
  • [Ke] A. Kelley, The stable, center-stable, center, center-unstable and unstable manifolds, W. A. Benjamin Inc., New York, Amsterdam, 1967, Appendix C in Transversal mappings and flows by R. Abraham and J. Robbin.
  • [K] M. Klein, On the absence of resonances for Schrödinger operators with nontrapping potentials in the classical limit, Comm. Math. Phys. 106 (1986), no. 3, 485–494.
  • [LPh] P. Lax and R. Phillips, Scattering theory, Pure and Appl. Math., vol. 26, Academic Press, New York, 1967.
  • [Le] G. Lebeau, Régularité Gevrey $3$ pour la diffraction, Comm. Partial Differential Equations 9 (1984), no. 15, 1437–1494.
  • [M] R. Melrose, Polynomials bound on the distribution of poles in scattering by an obstacle, Proceedings of the Journées “Equations aux dérivées partielles” à St Jean de Montes, Société Mathématique de France, 4–8 Juin 1984.
  • [N1] S. Nakamura, A note on the absence of resonances for Schrödinger operators, Lett. Math. Phys. 16 (1988), no. 3, 217–223.
  • [N2] S. Nakamura, Shape resonances for distortion analytic Schrödinger operators, Preprint.
  • [PSt] V. Petkov Stojanov, Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles, Preprint, 1987.
  • [Sh] M. Shub, Global stability of dynamical systems, Springer Verlag, New York, 1987.
  • [Si] Ya. G. Sinai, Development of Krylov's ideas, Princeton Univ. Press, 1979, Addendum to Works on the foundations of statistical physics, by N. S. Krylov.
  • [S1] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95, Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1–166.
  • [S2] J. Sjöstrand, Propagation of singularities for operators with multiple involutive characteristics, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, v, 141–155.
  • [S3] J. Sjöstrand, Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 402–429.
  • [S4] J. Sjöstrand, Estimates on the number of resonances for semiclassical Schrödinger operators, Partial Differential Equations (Rio de Janeiro, 1986), Lecture Notes in Math., vol. 1324, Springer, Berlin, 1988, pp. 286–292.
  • [T] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74.
  • [Z] M. Zworski, Sharp polynomial bounds on the number of scattering poles, Preprint.