Duke Mathematical Journal

Inversion formulas for the k-dimensional Radon transform in real hyperbolic spaces

Carlos A. Berenstein and Tarabusi Enrico Casadio

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J., Volume 62, Number 3 (1991), 613-631.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C65: Integral geometry [See also 52A22, 60D05]; differential forms, currents, etc. [See mainly 58Axx]
Secondary: 58G99


Berenstein, Carlos A.; Casadio, Tarabusi Enrico. Inversion formulas for the $k$ -dimensional Radon transform in real hyperbolic spaces. Duke Math. J. 62 (1991), no. 3, 613--631. doi:10.1215/S0012-7094-91-06227-7. https://projecteuclid.org/euclid.dmj/1077296509

Export citation


  • [BB1] D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E. 17 (1984), 723–733.
  • [BB2] D. C. Barber and B. H. Brown, Recent developments in applied potential tomography—APT, Information Processing in Medical Imaging ed. S. Bacharach, Nijhoff, Dordrecht, 1986, pp. 106–121.
  • [BCCP] C. A. Berenstein, Casadio E. Tarabusi, J. M. Cohen, and M. A. Picardello, Integral geometry on trees, Amer. J. Math., To appear.
  • [BZ] C. A. Berenstein and L. Zalcman, Pompeiu's problem on symmetric spaces, Comment. Math. Helv. 55 (1980), no. 4, 593–621.
  • [B] G. Beylkin, The inversion problem and applications of the generalized Radon transform, Comm. Pure Appl. Math. 37 (1984), no. 5, 579–599.
  • [BS] W. Bray and D. C. Solmon, The horocycle transform and harmonic analysis on the Poincaré disk, preprint.
  • [Ci] Casadio E. Tarabusi, Inversion of the X-ray transform: continuous vs. discrete, Contemp. Math. To appear.
  • [CK]1 A. M. Cormack, The Radon transform on a family of curves in the plane, Proc. Amer. Math. Soc. 83 (1981), no. 2, 325–330.
  • [CK]2 A. M. Cormack, The Radon transform on a family of curves in the plane. II, Proc. Amer. Math. Soc. 86 (1982), no. 2, 293–298.
  • [CQ] A. M. Cormack and E. T. Quinto, A Radon transform on spheres through the origin in $\bf R\spn$ and applications to the Darboux equation, Trans. Amer. Math. Soc. 260 (1980), no. 2, 575–581.
  • [Gv] A. B. Goncharov, Dopustimye semeĭstva $k$-mernykh podmnogoobraziĭ, Dokl. Akad. Nauk SSSR 300 (1988), no. 3, 535–539, Admissible families of $k$-dimensional surfaces, Soviet Math. Dokl. 37 (1988), 683–687.
  • [Gz] F. Gonzalez, Radon transforms on Grassmann manifolds, Ph.D. thesis, Mass. Inst. Technology, 1984.
  • [GR] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1980, corrected and enlarged edition, Academic Press, Orlando.
  • [GU] A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. 58 (1989), no. 1, 205–240.
  • [Gg] E. L. Grinberg, Spherical harmonics and integral geometry on projective spaces, Trans. Amer. Math. Soc. 279 (1983), no. 1, 187–203.
  • [H1] S. Helgason, Differential operators on homogenous spaces, Acta Math. 102 (1959), 239–299.
  • [H2] S. Helgason, Groups and geometric analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure and Applied Mathematics, vol. 113, Academic Press Inc., Orlando, FL, 1984.
  • [H3] S. Helgason, The totally-geodesic Radon transform on constant curvature spaces, Contemp. Math. To appear.
  • [KS] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press Selected Reprint Ser., New York, 1988.
  • [K] F. Keinert, Inversion of $k$-plane transforms and applications in computer tomography, SIAM Rev. 31 (1989), no. 2, 273–298.
  • [N] F. Natterer, The mathematics of computerized tomography, B. G. Teubner, Stuttgart, 1986.
  • [Q]1 E. T. Quinto, The invertibility of rotation invariant Radon transforms, J. Math. Anal. Appl. 91 (1983), no. 2, 510–522.
  • [Q]2 E. T. Quinto, Erratum: “The invertibility of rotation invariant Radon transforms”, J. Math. Anal. Appl. 94 (1983), no. 2, 602–603.
  • [SV] F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging, SIAM J. Appl. Math. 50 (1990), no. 1, 216–243.
  • [Sĭ] V. I. Semjanistyĭ, Nekotorye zadachi integral'noĭgeometrii v psevdoevklidovykh i neevklidovykh prostranstvakh, Trudy Sem. Vektor. Tenzor. Anal. 13 (1966), 244–302, Certain problems of integral geometry in pseudo-Euclidean and non-Euclidean spaces, abstract #7125, MR 35 (1968), p. 1324.
  • [Sn] D. C. Solmon, The $X$-ray transform, J. Math. Anal. Appl. 56 (1976), no. 1, 61–83.
  • [Sz1] R. S. Strichartz, $L\sp p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981), no. 4, 699–727.
  • [Sz2] R. S. Strichartz, Radon inversion—variations on a theme, Amer. Math. Monthly 89 (1982), no. 6, 377–384, 420–423.
  • [WY] D. I. Wallace and Ryuji Yamaguchi, The Radon transform on $\rm SL(2,\bf R)/\rm SO(2,\bf R)$, Trans. Amer. Math. Soc. 297 (1986), no. 1, 305–318.