Duke Mathematical Journal

On complete quaternionic-Kähler manifolds

Claude LeBrun

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 63, Number 3 (1991), 723-743.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077296077

Digital Object Identifier
doi:10.1215/S0012-7094-91-06331-3

Mathematical Reviews number (MathSciNet)
MR1121153

Zentralblatt MATH identifier
0764.53045

Subjects
Primary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.)
Secondary: 32L25: Twistor theory, double fibrations [See also 53C28] 58D27: Moduli problems for differential geometric structures

Citation

LeBrun, Claude. On complete quaternionic-Kähler manifolds. Duke Math. J. 63 (1991), no. 3, 723--743. doi:10.1215/S0012-7094-91-06331-3. https://projecteuclid.org/euclid.dmj/1077296077


Export citation

References

  • [1] M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461.
  • [2] T. N. Bailey and M. G. Eastwood, Complex paraconformal manifolds—their differential geometry and twistor theory, Forum Math. 3 (1991), no. 1, 61–103.
  • [3] L. Berard-Bergery, Une généralisation de la théorie des twisteurs de Penrose, unpublished lectures at the Universite de Nancy I, 1983.
  • [4] M. Berger, Remarques sur les groupes d'holonomie des variétés Riemanniennes, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), 1316–1318.
  • [5] A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer, Berlin, 1987.
  • [6] R. L. Bryant, Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), no. 3, 525–576.
  • [7] A. Douady, Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 1–95.
  • [8] M. G. Eastwood and C. R. LeBrun, Fattening complex manifolds, curvature, and Kodaira-Spencer maps, preprint.
  • [9] M. G. Eastwood, R. Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1981), no. 3, 305–351.
  • [10] P. A. Griffiths, The extension problem in complex analysis. II. embeddings with positive normal bundle, Amer. J. Math. 88 (1966), 366–446.
  • [11] C. R. Graham and J. Lee, Einstein metrics on the ball with prescribed conformal infinity, preprint.
  • [12] K. Kodaira, On stability of compact submanifolds of complex manifolds, Amer. J. Math. 85 (1963), 79–94.
  • [13] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I& II, Ann. of Math. (2) 67 (1958), 328–466.
  • [14] C. R. LeBrun, $\cal H$-space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), no. 1778, 171–185.
  • [15] C. LeBrun, A rigidity theorem for quaternionic-Kähler manifolds, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1205–1208.
  • [16] C. LeBrun, Quaternionic-Kähler manifolds and conformal geometry, Math. Ann. 284 (1989), no. 3, 353–376.
  • [17] H. Pedersen, Einstein metrics, spinning top motions and monopoles, Math. Ann. 274 (1986), no. 1, 35–59.
  • [18] H. Pedersen and Y. S. Poon, Twistorial construction of quaternionic manifolds, Proceedings of the Sixth International Colloquium on Differential Geometry (Santiago de Compostela, 1988), Cursos Congr. Univ. Santiago de Compostela, vol. 61, Univ. Santiago de Compostela, Santiago de Compostela, 1989, pp. 207–218.
  • [19] R. Penrose, Nonlinear gravitons and curved twistor theory, General Relativity and Gravitation 7 (1976), no. 1, 31–52.
  • [20] R. Penrose and W. Rindler, Spinors and space-time. Vol. 2, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1986.
  • [21] Y.-S. Poon and S. M. Salamon, Quaternionic Kähler $8$-manifolds with positive scalar curvature, J. Differential Geom. 33 (1991), no. 2, 363–378.
  • [22] M. Namba, On maximal families of compact complex submanifolds of complex manifolds, Tohoku Math. J. (2) 24 (1972), 581–609.
  • [23] S. Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series, vol. 201, Longman Scientific & Technical, Harlow, 1989.
  • [24] S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), no. 1, 143–171.
  • [25] M. Thornber, Vanishing theorems for quaternionic-Kähler manifolds, Ph.D. thesis, State Univ. of New York, Stony Brook, 1989.
  • [26] R. S. Ward, Self-dual space-times with cosmological constant, Comm. Math. Phys. 78 (1980/81), no. 1, 1–17.