Duke Mathematical Journal

A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations

Hans Lindblad

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 72, Number 2 (1993), 503-539.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077289430

Digital Object Identifier
doi:10.1215/S0012-7094-93-07219-5

Mathematical Reviews number (MathSciNet)
MR1248683

Zentralblatt MATH identifier
0797.35123

Subjects
Primary: 35L70: Nonlinear second-order hyperbolic equations
Secondary: 35L15: Initial value problems for second-order hyperbolic equations 35L67: Shocks and singularities [See also 58Kxx, 76L05]

Citation

Lindblad, Hans. A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations. Duke Math. J. 72 (1993), no. 2, 503--539. doi:10.1215/S0012-7094-93-07219-5. https://projecteuclid.org/euclid.dmj/1077289430


Export citation

References

  • [1] M. Beals and M. Bezard, Low-regularity local solutions for field equations, preprint, 1992.
  • [2] P. Brenner, On $L\sbp-L\sbp\sp\prime $ estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254.
  • [3] C. Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336.
  • [4] M. Grillakis, Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math. 45 (1992), no. 6, 749–774.
  • [5] J. Harmse, On Lebesgue space estimates for the wave equation, Indiana Univ. Math. J. 39 (1990), no. 1, 229–248.
  • [6] L. Hörmander, Estimates for translation invariant operators in $L\spp$ spaces, Acta Math. 104 (1960), 93–140.
  • [7] L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 214–280.
  • [8] L. V. Kapitanskiĭ, Some generalizations of the Strichartz-Brenner inequality, Algebra i Analiz 1 (1989), no. 3, 127–159.
  • [9] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891–907.
  • [10] C. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527–620.
  • [11] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, preprint, 1991.
  • [12] H. Lindblad, Blow-up for solutions of $\square u=\vert u\vert \sp p$ with small initial data, Comm. Partial Differential Equations 15 (1990), no. 6, 757–821.
  • [13] H. Pecher, $L\spp$-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Z. 150 (1976), no. 2, 159–183.
  • [14] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, preprint, 1991.
  • [15] J. Rauch, Explosion for some semilinear wave equations, J. Differential Equations 74 (1988), no. 1, 29–33.
  • [16] J. Ralston, Gaussian beams and the propagation of singularities, Studies in partial differential equations, MAA Stud. Math., vol. 23, Math. Assoc. America, Washington, DC, 1982, pp. 206–248.
  • [17] I. Segal, Space-time decay for solutions of wave equations, Advances in Math. 22 (1976), no. 3, 305–311.
  • [18] J. Shatah and Shadi A. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, preprint, 1992.
  • [19] C. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993.
  • [20] E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355.
  • [21] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492.
  • [22] R. S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471.
  • [23] R. S. Strichartz, A priori estimates for the wave equation and some applications, J. Functional Analysis 5 (1970), 218–235.