Duke Mathematical Journal
- Duke Math. J.
- Volume 73, Number 3 (1994), 687-711.
Shape theory and asymptotic morphisms for -algebras
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 73, Number 3 (1994), 687-711.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077289020
Digital Object Identifier
doi:10.1215/S0012-7094-94-07327-4
Mathematical Reviews number (MathSciNet)
MR1262931
Zentralblatt MATH identifier
0847.46028
Subjects
Primary: 46L85: Noncommutative topology [See also 58B32, 58B34, 58J22]
Citation
Dadarlat, Marius. Shape theory and asymptotic morphisms for $C^\ast$ -algebras. Duke Math. J. 73 (1994), no. 3, 687--711. doi:10.1215/S0012-7094-94-07327-4. https://projecteuclid.org/euclid.dmj/1077289020
References
- [B] B. Blackadar, Shape theory for $C^\ast$-algebras, Math. Scand. 56 (1985), no. 2, 249–275.
- [Ca] F. Cathey, Strong shape theory, Thesis, University of Washington, 1979.
- [C] A. Connes, Noncommutative Geometry, (English edition), in preparation.
- [CH] A. Connes and N. Higson, Deformations, morphismes asymptotiques et $K$-theorie bivariante, C. R. Acad. Sci. Paris Sér. I. Math. 311 (1990), no. 2, 101–106.
- [CH1] A. Connes and N. Higson, in preparation.
- [CK] A. Connes and J. Kaminker, in preparation.
- [Cu] J. Cuntz, $K$-theory and $C^\ast$-algebras, Algebraic $K$-theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046, Springer-Verlag, Berlin, 1984, pp. 55–79.Mathematical Reviews (MathSciNet): MR86d:46071
Zentralblatt MATH: 0548.46056
Digital Object Identifier: doi:10.1007/BFb0072018 - [D1] M. Dadarlat, Homotopy after tensoring with uniformly hyperfinite $C\sp *$-algebras, $K$-Theory 7 (1993), no. 2, 133–143.Mathematical Reviews (MathSciNet): MR94g:46082
Zentralblatt MATH: 0802.46085
Digital Object Identifier: doi:10.1007/BF00962084 - [D2] M. Dadarlat, Some examples in homotopy theory of stable $C^*$-algebras, preprint, 1991.
- [D3] M. Dadarlat, On the asymptotic homotopy type of inductive limit $C^\ast$-algebras, to appear in Math. Ann.Mathematical Reviews (MathSciNet): MR1245412
Zentralblatt MATH: 0791.46047
Digital Object Identifier: doi:10.1007/BF01459523 - [D4] M. Dadarlat, A note on asymptotic morphisms, preprint, 1992.
- [DN] M. Dadarlat and A. Nemethi, Shape theory and connective $K$-theory, J. Operator Theory 23 (1990), no. 2, 207–291.
- [DL] M. Dadarlat and T. A. Loring, $K$-homology, asymptotic representations and unsuspended $E$-theory, to appear in J. Funct. Anal.Mathematical Reviews (MathSciNet): MR1305073
Zentralblatt MATH: 0863.46045
Digital Object Identifier: doi:10.1006/jfan.1994.1151 - [EH] D. A. Edwards and H. M. Hastings, Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lecture Notes in Math., vol. 542, Springer-Verlag, Berlin, 1976.
- [EK1] E. G. Effros and J. Kaminker, Homotopy continuity and shape theory for $C^ \ast$-algebras, Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 152–180.
- [EK2] E. G. Effros and J. Kaminker, Some homotopy and shape calculations for $C^ \ast$-algebras, Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Berkeley, Calif., 1984) ed. C. C. Moore, Math. Sci. Res. Inst. Publ., vol. 6, Springer-Verlag, New York, 1987, pp. 69–120.
- [E] G. Elliott, Are amenable $C^ *$-algebras classifiable? Representation Theory of Groups and Algebras eds. J. Adams, R. Herb, S. Kudla, J.-S. Li, R. Lipsman, and J. Rosenberg, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, 1993, pp. 423–427.
- [H] N. Higson, Categories of fractions and excision in $KK$-theory, J. Pure Appl. Algebra 65 (1990), no. 2, 119–138.Mathematical Reviews (MathSciNet): MR91i:19005
Zentralblatt MATH: 0718.46053
Digital Object Identifier: doi:10.1016/0022-4049(90)90114-W - [K] G. G. Kasparov, The operator $K$-functor and extensions of $C^\ast$-algebras, Math. USSR-Izv. 16 (1981), 513–572.
- [L] T. Ju. Lisica, On the exactness of the spectral homotopy group sequence in shape theory, Soviet Math. Dokl. 18 (1977), 1118–1190.
- [Lo] T. A. Loring, $C\sp *$-algebras generated by stable relations, J. Funct. Anal. 112 (1993), no. 1, 159–203.Mathematical Reviews (MathSciNet): MR94k:46115
Zentralblatt MATH: 0778.46036
Digital Object Identifier: doi:10.1006/jfan.1993.1029 - [MS] S. Mardešić and J. Segal, Shape Theory, North-Holland Math. Library, vol. 26, North-Holland, Amsterdam, 1982.
- [Q] J. B. Quigley, An exact sequence from the $n$th to the $(n-1)$-st fundamental group, Fund. Math. 77 (1973), no. 3, 195–210.
- [RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474.Mathematical Reviews (MathSciNet): MR88i:46091
Zentralblatt MATH: 0644.46051
Digital Object Identifier: doi:10.1215/S0012-7094-87-05524-4
Project Euclid: euclid.dmj/1077306030

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Generalized Bebutov systems: a dynamical interpretation of shape
GIRALDO, Antonio and M. R. SANJURJO, José, Journal of the Mathematical Society of Japan, 1999 - The homotopy theory of strong homotopy algebras and
bialgebras
Pridham, J. P., Homology, Homotopy and Applications, 2010 - $E_1$–formality of complex algebraic varieties
Cirici, Joana and Guillén, Francisco, Algebraic & Geometric Topology, 2014
- Generalized Bebutov systems: a dynamical interpretation of shape
GIRALDO, Antonio and M. R. SANJURJO, José, Journal of the Mathematical Society of Japan, 1999 - The homotopy theory of strong homotopy algebras and
bialgebras
Pridham, J. P., Homology, Homotopy and Applications, 2010 - $E_1$–formality of complex algebraic varieties
Cirici, Joana and Guillén, Francisco, Algebraic & Geometric Topology, 2014 - A new curve algebraically but not rationally uniformized by radicals
Pirola, Gian PietroI, Rizzi, Cecilia, and Schlesinger, Enrico, Asian Journal of Mathematics, 2014 - On graded $K$-theory, elliptic operators and the functional calculus
Trout, Jody, Illinois Journal of Mathematics, 2000 - An algebraic model for the loop space homology of a homotopy fiber
Hess, Kathryn and Levi, Ran, Algebraic & Geometric Topology, 2007 - An algebraic model for homotopy fibers
Dupont, Nicolas and Hess, Kathryn, Homology, Homotopy and Applications, 2002 - Modular Representations of Algebraic Groups
Parshall, B. J., Topics in the Theory of Algebraic Groups, 1982 - Oriented cohomology theories of algebraic varieties II
Panin, Ivan, Homology, Homotopy and Applications, 2009 - Descent in categories of (co)algebras
Mesablishvili, Bachuki, Homology, Homotopy and Applications, 2005
