Duke Mathematical Journal

Shape theory and asymptotic morphisms for C-algebras

Marius Dadarlat

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 73, Number 3 (1994), 687-711.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077289020

Digital Object Identifier
doi:10.1215/S0012-7094-94-07327-4

Mathematical Reviews number (MathSciNet)
MR1262931

Zentralblatt MATH identifier
0847.46028

Subjects
Primary: 46L85: Noncommutative topology [See also 58B32, 58B34, 58J22]

Citation

Dadarlat, Marius. Shape theory and asymptotic morphisms for $C^\ast$ -algebras. Duke Math. J. 73 (1994), no. 3, 687--711. doi:10.1215/S0012-7094-94-07327-4. https://projecteuclid.org/euclid.dmj/1077289020


Export citation

References

  • [B] B. Blackadar, Shape theory for $C^\ast$-algebras, Math. Scand. 56 (1985), no. 2, 249–275.
  • [Ca] F. Cathey, Strong shape theory, Thesis, University of Washington, 1979.
  • [C] A. Connes, Noncommutative Geometry, (English edition), in preparation.
  • [CH] A. Connes and N. Higson, Deformations, morphismes asymptotiques et $K$-theorie bivariante, C. R. Acad. Sci. Paris Sér. I. Math. 311 (1990), no. 2, 101–106.
  • [CH1] A. Connes and N. Higson, in preparation.
  • [CK] A. Connes and J. Kaminker, in preparation.
  • [Cu] J. Cuntz, $K$-theory and $C^\ast$-algebras, Algebraic $K$-theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046, Springer-Verlag, Berlin, 1984, pp. 55–79.
  • [D1] M. Dadarlat, Homotopy after tensoring with uniformly hyperfinite $C\sp *$-algebras, $K$-Theory 7 (1993), no. 2, 133–143.
  • [D2] M. Dadarlat, Some examples in homotopy theory of stable $C^*$-algebras, preprint, 1991.
  • [D3] M. Dadarlat, On the asymptotic homotopy type of inductive limit $C^\ast$-algebras, to appear in Math. Ann.
  • [D4] M. Dadarlat, A note on asymptotic morphisms, preprint, 1992.
  • [DN] M. Dadarlat and A. Nemethi, Shape theory and connective $K$-theory, J. Operator Theory 23 (1990), no. 2, 207–291.
  • [DL] M. Dadarlat and T. A. Loring, $K$-homology, asymptotic representations and unsuspended $E$-theory, to appear in J. Funct. Anal.
  • [EH] D. A. Edwards and H. M. Hastings, Čech and Steenrod Homotopy Theories with Applications to Geometric Topology, Lecture Notes in Math., vol. 542, Springer-Verlag, Berlin, 1976.
  • [EK1] E. G. Effros and J. Kaminker, Homotopy continuity and shape theory for $C^ \ast$-algebras, Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 152–180.
  • [EK2] E. G. Effros and J. Kaminker, Some homotopy and shape calculations for $C^ \ast$-algebras, Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Berkeley, Calif., 1984) ed. C. C. Moore, Math. Sci. Res. Inst. Publ., vol. 6, Springer-Verlag, New York, 1987, pp. 69–120.
  • [E] G. Elliott, Are amenable $C^ *$-algebras classifiable? Representation Theory of Groups and Algebras eds. J. Adams, R. Herb, S. Kudla, J.-S. Li, R. Lipsman, and J. Rosenberg, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, 1993, pp. 423–427.
  • [H] N. Higson, Categories of fractions and excision in $KK$-theory, J. Pure Appl. Algebra 65 (1990), no. 2, 119–138.
  • [K] G. G. Kasparov, The operator $K$-functor and extensions of $C^\ast$-algebras, Math. USSR-Izv. 16 (1981), 513–572.
  • [L] T. Ju. Lisica, On the exactness of the spectral homotopy group sequence in shape theory, Soviet Math. Dokl. 18 (1977), 1118–1190.
  • [Lo] T. A. Loring, $C\sp *$-algebras generated by stable relations, J. Funct. Anal. 112 (1993), no. 1, 159–203.
  • [MS] S. Mardešić and J. Segal, Shape Theory, North-Holland Math. Library, vol. 26, North-Holland, Amsterdam, 1982.
  • [Q] J. B. Quigley, An exact sequence from the $n$th to the $(n-1)$-st fundamental group, Fund. Math. 77 (1973), no. 3, 195–210.
  • [RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474.