Duke Mathematical Journal

On minuscule representations, plane partitions and involutions in complex Lie groups

John R. Stembridge

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Duke Math. J., Volume 73, Number 2 (1994), 469-490.

First available in Project Euclid: 20 February 2004

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05A15: Exact enumeration problems, generating functions [See also 33Cxx, 33Dxx]
Secondary: 05E99: None of the above, but in this section 17B10: Representations, algebraic theory (weights) 22E60: Lie algebras of Lie groups {For the algebraic theory of Lie algebras, see 17Bxx}


Stembridge, John R. On minuscule representations, plane partitions and involutions in complex Lie groups. Duke Math. J. 73 (1994), no. 2, 469--490. doi:10.1215/S0012-7094-94-07320-1. https://projecteuclid.org/euclid.dmj/1077288819

Export citation


  • [B] N. Bourbaki, Groupes et Algèbres de Lie, Chap. IV–VI, Masson, Paris, 1981.
  • [H1] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, 1972.
  • [H2] J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, Berlin, 1975.
  • [K] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.
  • [Ku] G. Kuperberg, Self-complementary plane partitions by Proctor's method, preprint.
  • [M] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1979.
  • [MRR] W. H. Mills, D. P. Robbins, and H. Rumsey, Self-complementary totally symmetric plane partitions, J. Combin. Theory Ser. A 42 (1986), no. 2, 277–292.
  • [P] R. A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), no. 4, 331–350.
  • [S] C. S. Seshadri, Geometry of $G/P$—I. Theory of standard monomials for minuscule representations, C. P. Ramanujam—A Tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Springer-Verlag, Berlin, 1978, pp. 207–239.
  • [St1] R. P. Stanley, Enumerative Combinatorics, Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth and Brooks/Cole, Monterey, California, 1986.
  • [St2] R. P. Stanley, Symmetries of plane partitions, J. Combin. Theory Ser. A 43 (1986), no. 1, 103–113.
  • [Ste1] J. R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, to appear in J. Combin. Theory Ser. A.
  • [Ste2] J. R. Stembridge, A Maple package for root systems and finite Coxeter groups, 1992, unpublished technical report.