Duke Mathematical Journal

Distribution of energy levels of a quantum free particle on a surface of revolution

Pavel M. Bleher

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 74, Number 1 (1994), 45-93.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077288009

Digital Object Identifier
doi:10.1215/S0012-7094-94-07403-6

Mathematical Reviews number (MathSciNet)
MR1271463

Zentralblatt MATH identifier
0808.11059

Subjects
Primary: 58G18
Secondary: 35P99: None of the above, but in this section 58G25 81Q99: None of the above, but in this section

Citation

Bleher, Pavel M. Distribution of energy levels of a quantum free particle on a surface of revolution. Duke Math. J. 74 (1994), no. 1, 45--93. doi:10.1215/S0012-7094-94-07403-6. https://projecteuclid.org/euclid.dmj/1077288009


Export citation

References

  • [Bér] P. H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), no. 3, 249–276.
  • [Bes] A. S. Besicovitch, Almost Periodic Functions, Dover, New York, 1958.
  • [Ble1] P. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67 (1992), no. 3, 461–481.
  • [Ble2] P. M. Bleher, Distribution of the error term in the Weyl asymptotics for the Laplace operator on a two-dimensional torus and related lattice problems, Duke Math. J. 70 (1993), no. 3, 655–682.
  • [BCDL] P. M. Bleher, Z. Cheng, F. J. Dyson, and J. L. Lebowitz, Distribution of the error term for the number of lattice points inside a shifted circle, Comm. Math. Phys. 154 (1993), no. 3, 433–469.
  • [BL] P. M. Bleher and J. L. Lebowitz, Energy-level statistics of model quantum systems: universality and scaling in a lattice-point problem, to appear in J. Statist. Phys.
  • [CdV1] Y. Colin de Verdière, Nombre de points entiers dans une famille homothétique de domains de $\bf R$, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 559–575.
  • [CdV2] Y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable, Math. Z. 171 (1980), no. 1, 51–73.
  • [DG] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79.
  • [Gui] V. Guillemin, Lectures on spectral theory of elliptic operators, Duke Math. J. 44 (1977), no. 3, 485–517.
  • [Har1] G. H. Hardy, The average order of the arithmetical functors $P(X)$ and $\Delta(X)$, Proc. London Math. Soc. (2) 15 (1916), 192–213.
  • [Har2] G. H. Hardy, On Dirichlet's divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1–25.
  • [HB] D. R. Heath-Brown, The distribution and moments of the error term in the Dirichlet divisor problem, Acta Arith. 60 (1992), no. 4, 389–415.
  • [HR] D. A. Hejhal and B. Rackner, On the topography of the Maass waveforms for $PSL(2, \mathbfZ)$: experiments and heuristics, preprint UMSI 92/162, Univ. of Minnesota, 1992.
  • [Hla] E. Hlawka, Über Integrale auf konvexen Körpern. I, Monatsh. Math. 54 (1950), 1–36.
  • [Hör1] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218.
  • [Hör2]1 L. Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983.
  • [Hör2]2 L. Hörmander, The analysis of linear partial differential operators. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 257, Springer-Verlag, Berlin, 1983.
  • [Hux] M. N. Huxley, Exponential sums and lattice points. II, Proc. London Math. Soc. (3) 66 (1993), no. 2, 279–301.
  • [Lan] E. Landau, Vorlesungen über Zahlentheorie. Erster Band, zweiter Teil; zweiter Band; dritter Band, Chelsea Publishing Co., New York, 1969.
  • [LS] W. Luo and P. Sarnak, Number variance for arithmetic hyperbolic surfaces, preprint, Princeton Univ., 1993.
  • [Ran] B. Randol, A lattice-point problem, Trans. Amer. Math. Soc. 121 (1966), 257–268.
  • [Sar] P. Sarnak, Arithmetic quantum chaos, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183–236.
  • [Sie] W. Sierpinski, Oeuvres choisies, Vol. I, PWN—Éditions Scientifiques de Pologne, Warsaw, 1974.