Duke Mathematical Journal

Log abundance theorem for threefolds

Sean Keel, Kenji Matsuki, and James McKernan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 75, Number 1 (1994), 99-119.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077287412

Digital Object Identifier
doi:10.1215/S0012-7094-94-07504-2

Mathematical Reviews number (MathSciNet)
MR1284817

Zentralblatt MATH identifier
0818.14007

Subjects
Primary: 14E30: Minimal model program (Mori theory, extremal rays)
Secondary: 14J30: $3$-folds [See also 32Q25] 14J35: $4$-folds

Citation

Keel, Sean; Matsuki, Kenji; McKernan, James. Log abundance theorem for threefolds. Duke Math. J. 75 (1994), no. 1, 99--119. doi:10.1215/S0012-7094-94-07504-2. https://projecteuclid.org/euclid.dmj/1077287412


Export citation

References

  • [1] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452.
  • [2] T. Fujita, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Soc. Japan 38 (1986), no. 1, 19–37.
  • [3] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 167–178.
  • [4] H. Clemens, J. Kollár, and S. Mori, Higher-dimensional complex geometry, Astérisque (1988), no. 166, 144 pp. (1989).
  • [5] Y. Kawamata, Pluricanonical systems on minimal algebraic varieties, Invent. Math. 79 (1985), no. 3, 567–588.
  • [6] Y. Kawamata, The Zariski decomposition of log-canonical divisors, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 425–433.
  • [7] Y. Kawamata, On the length of an extremal rational curve, Invent. Math. 105 (1991), no. 3, 609–611.
  • [8] Y. Kawamata, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), no. 2, 229–246.
  • [9] Y. Kawamata, Log canonical models of algebraic $3$-folds, Internat. J. Math. 3 (1992), no. 3, 351–357.
  • [10] Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985 ed. T. Oda, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360.
  • [11] J. Kollar, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42.
  • [12] J. Kollàr, et al., Flips and abundance for algebraic threefolds, Astérisque, vol. 211, Société Mathématique de France, Paris, 1992.
  • [13] V. B. Mehta and A. Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1981/82), no. 3, 213–224.
  • [14] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449–476.
  • [15] Y. Miyaoka, Abundance conjecture for $3$-folds: case $\nu=1$, Compositio Math. 68 (1988), no. 2, 203–220.
  • [16] Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann. 281 (1988), no. 2, 325–332.
  • [17] Y. Miyaoka and S. Mori, A numerical criterion for uniruledness, Ann. of Math. (2) 124 (1986), no. 1, 65–69.
  • [18] K. Oguiso, On algebraic fiber space structures on a Calabi-Yau $3$-fold, Internat. J. Math. 4 (1993), no. 3, 439–465, with an appendix by Noburo Nakayama.
  • [19] M. Reid, Young person's guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Symp. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414.
  • [20] M. Reid, Nonnormal del Pezzo surfaces, preprint, University of Warwick, 1990.
  • [21] V. V. Shokurov, $3$-fold log flips, Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 105–203.