Duke Mathematical Journal

Topological Radon transforms and the local Euler obstruction

Lars Ernström

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 76, Number 1 (1994), 1-21.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077286737

Digital Object Identifier
doi:10.1215/S0012-7094-94-07601-1

Mathematical Reviews number (MathSciNet)
MR1301184

Zentralblatt MATH identifier
0831.32016

Subjects
Primary: 32S60: Stratifications; constructible sheaves; intersection cohomology [See also 58Kxx]
Secondary: 14P05: Real algebraic sets [See also 12D15, 13J30] 44A12: Radon transform [See also 92C55]

Citation

Ernström, Lars. Topological Radon transforms and the local Euler obstruction. Duke Math. J. 76 (1994), no. 1, 1--21. doi:10.1215/S0012-7094-94-07601-1. https://projecteuclid.org/euclid.dmj/1077286737


Export citation

References

  • [1] J.-L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque (1986), no. 140-141, 3–134, 251.
  • [2] J.-L. Brylinski, B. Malgrange, and J.-L. Verdier, Transformation de Fourier géométrique. I, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 1, 55–58.
  • [3] A. Dimca, On the homology and cohomology of complete intersections with isolated singularities, Compositio Math. 58 (1986), no. 3, 321–339.
  • [4] A. S. Dubson, Classes caractéristiques des variétés singulières, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A237–A240.
  • [5] A. S. Dubson, Formule pour l'indice des complexes constructibles et des Modules holonomes, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 6, 113–116.
  • [6] A. S. Dubson, Formule pour les cycles évanescents, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 6, 181–184.
  • [7] L. Ernström, Duality for the local Euler obstruction, Ph.D. thesis, Massachusetts Institute of Technology, 1993.
  • [8] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
  • [9] W. Fulton and R. MacPherson, Intersecting cycles on an algebraic variety, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) ed. Holm, P., Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 179–197.
  • [10] W. Fulton and R. MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165.
  • [11] V. Ginsburg, Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986), no. 2, 327–402.
  • [12] G. González-Sprinberg, L'obstruction locale d'Euler et le théorème de MacPherson, The Euler-Poincaré characteristic (French), Astérisque, vol. 83, Soc. Math. France, Paris, 1981, pp. 7–32.
  • [13] J. P. Henry, M. Merle, and C. Sabbah, Sur la condition de Thom stricte pour un morphisme analytique complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 2, 227–268.
  • [14] M. Kashiwara, Index theorem for a maximally overdetermined system of linear differential equations, Proc. Japan Acad. 49 (1973), 803–804.
  • [15] M. Kashiwara, On the holonomic systems of linear differential equations. II, Invent. Math. 49 (1978), no. 2, 121–135.
  • [16] G. Kennedy, MacPherson's Chern classes of singular algebraic varieties, Comm. Algebra 18 (1990), no. 9, 2821–2839.
  • [17] S. L. Kleiman, About the conormal scheme, Complete intersections (Acireale, 1983), Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 161–197.
  • [18] S. L. Kleiman, Tangency and duality, Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, Amer. Math. Soc., Providence, RI, 1986, pp. 163–225.
  • [19] S. L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297.
  • [20] S. L. Kleiman, The enumerative theory of singularities, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) ed. Holm, P., Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 297–396.
  • [21] F. Klein, Eine neue relation zwischen den singularitäten einer algebraischer curve, Math. Ann. 10 (1876), 763–781.
  • [22] T. Lê D. and B. Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. (2) 114 (1981), no. 3, 457–491.
  • [23] Tráng Lê D ung, Limites d'espaces tangents et obstruction d'Euler des surfaces, The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 45–69.
  • [24] E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77, Cambridge University Press, Cambridge, 1984.
  • [25] M. Merle, Variétés polaires, stratifications de Whitney et classes de Chern des espaces analytiques complexes (d'après Lê-Teissier), Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 65–78.
  • [26] R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432.
  • [27] L. Boutet de Monvel, On the index of Toeplitz operators of several complex variables, Invent. Math. 50 (1978/79), no. 3, 249–272.
  • [28] A. Parusiński, A generalization of the Milnor number, Math. Ann. 281 (1988), no. 2, 247–254.
  • [29] A. Parusiński and P. Pragacz, Characteristic numbers of degeneracy loci, Enumerative algebraic geometry (Copenhagen, 1989), Contemp. Math., vol. 123, Amer. Math. Soc., Providence, RI, 1991, pp. 189–197.
  • [30] A. Parusiński and P. Pragacz, A formula for the Euler characteristic of singular hypersurfaces, to appear in J. Algebraic Geom.
  • [31] R. Piene, Cycles Polaires et Classes de Chern pour les Varietes Projectives Singulieres, École Polytechnique Centre de Mathématiques, 1977-78.
  • [32] C. Sabbah, Quelques remarques sur la géométrie des espaces conormaux, Astérisque (1985), no. 130, 161–192.
  • [33]1 Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d'une variété analytique complexe. I, C. R. Acad. Sci. Paris 260 (1965), 3262–3264.
  • [33]2 Marie-Hélène Schwartz, Classes caractéristiques définies par une stratification d'une variété analytique complexe, C. R. Acad. Sci. Paris 260 (1965), 3535–3537.
  • [34] B. Teissier, Sur la classification des singularités des espaces analytiques complexes, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 763–781.
  • [35] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295–312.
  • [36] O. Ya. Viro, Some integral calculus based on Euler characteristic, Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, 1988, pp. 127–138.
  • [37] H. G. Zeuthen, Sur les différentes formes des courbes planes du quatrième ordre, Math. Ann. 7 (1873), 410–432.
  • [38] A. Dimca, Milnor numbers and multiplicities of dual varieties, Rev. Roumaine Math. Pures Appl. 33 (1988), 535–538.
  • [39] A. Nemethi, Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures Appl. 33 (1988), no. 3, 233–250.