Duke Mathematical Journal

On Waring’s problem for four cubes

Jörg Brüdern and Nigel Watt

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 77, Number 3 (1995), 583-606.

Dates
First available in Project Euclid: 20 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077286534

Digital Object Identifier
doi:10.1215/S0012-7094-95-07718-7

Mathematical Reviews number (MathSciNet)
MR1324635

Zentralblatt MATH identifier
0828.11051

Subjects
Primary: 11P05: Waring's problem and variants
Secondary: 11P55: Applications of the Hardy-Littlewood method [See also 11D85]

Citation

Brüdern, Jörg; Watt, Nigel. On Waring’s problem for four cubes. Duke Math. J. 77 (1995), no. 3, 583--606. doi:10.1215/S0012-7094-95-07718-7. https://projecteuclid.org/euclid.dmj/1077286534


Export citation

References

  • [1] J. Brüdern, Additive diophantine inequalities with mixed powers I, Mathematika 34 (1987), 124–130.
  • [2] J. Brüdern, A problem in additive number theory, Math. Proc. Cambridge Phil. Soc. 103 (1988), no. 1, 27–33.
  • [3] J. Brüdern, On Waring's problem for cubes, Math. Proc. Cambridge Phil. Soc. 109 (1991), no. 2, 229–256.
  • [4] J. Brüdern, Sieves, the circle method, and Waring's problem for cubes, Math. Gottingensis, vol. 51, Habilitationsschrift, Universität Göttingen, 1991.
  • [5] J. Brüdern, A note on cubic exponential sums, Seminaire de Theorie des nombres Paris 1990–1991 ed. S. David, Progress in Math., vol. 108, Birkhäuser, Basel, 1993, pp. 23–34.
  • [6] K. D. Boklan, A reduction technique in Waring's problem I, Acta Arith. 65 (1993), no. 2, 147–161.
  • [7] G. H. Hardy and J. E. Littlewood, Some problems of “Partitio Numerorum” I: A new solution of Waring's problem, Göttinger Nachrichten (1920), 33–54.
  • [8] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Mathematics, vol. 90, Cambridge University Press, Cambridge, 1988.
  • [9] C. Hooley, On the numbers that are representable as the sum of two cubes, J. Reine Angew. Math. 314 (1980), 146–173.
  • [10] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974.
  • [11] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge, 1981.
  • [12] R. C. Vaughan, Some remarks on Weyl sums, Topics in Classical Number Theory (Budapest, 1981), Colloq. Math. Soc. Janos Bolyai, vol. 34, North-Holland, Amsterdam, 1984, pp. 1585–1602.
  • [13] R. C. Vaughan, Sums of three cubes, Bull. London Math. Soc. 17 (1985), no. 1, 17–20.
  • [14] R. C. Vaughan, On Waring's problem for cubes, J. Reine Angew. Math. 365 (1986), 122–170.
  • [15] R. C. Vaughan, On Waring's problem for cubes II, J. London Math. Soc. (2) 39 (1989), no. 2, 205–218.
  • [16] T. D. Wooley, Large improvements in Waring's problem, Ann. of Math. (2) 135 (1992), no. 1, 131–164.