Duke Mathematical Journal
- Duke Math. J.
- Volume 79, Number 2 (1995), 423-485.
Isogenies of formal group laws and power operations in the cohomology theories
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 79, Number 2 (1995), 423-485.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077285158
Digital Object Identifier
doi:10.1215/S0012-7094-95-07911-3
Mathematical Reviews number (MathSciNet)
MR1344767
Zentralblatt MATH identifier
0862.55004
Subjects
Primary: 55N22: Bordism and cobordism theories, formal group laws [See also 14L05, 19L41, 57R75, 57R77, 57R85, 57R90]
Secondary: 14L05: Formal groups, $p$-divisible groups [See also 55N22]
Citation
Ando, Matthew. Isogenies of formal group laws and power operations in the cohomology theories $E_n$. Duke Math. J. 79 (1995), no. 2, 423--485. doi:10.1215/S0012-7094-95-07911-3. https://projecteuclid.org/euclid.dmj/1077285158
References
- [And92] M Ando, Operations in complex-oriented cohomology theories related to subgroups of formal groups, Ph.D. thesis, Massachusetts Inst. of Technology, 1992.
- [Ati66] M. F. Atiyah, Power operations in $K$-theory, Quart. J. Math. Oxford Ser. (2) 17 (1966), 165–193.Mathematical Reviews (MathSciNet): MR34:2004
Zentralblatt MATH: 0144.44901
Digital Object Identifier: doi:10.1093/qmath/17.1.165 - [Bak90] A. Baker, Hecke operators as operations in elliptic cohomology, J. Pure Applied Algebra 63 (1990), no. 1, 1–11.Mathematical Reviews (MathSciNet): MR91m:55005
Zentralblatt MATH: 0688.55007
Digital Object Identifier: doi:10.1016/0022-4049(90)90052-J - [BMMS86] R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Math., vol. 1176, Springer, Berlin, 1986.
- [BT89] R. Bott and C. Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1989), no. 1, 137–186.Mathematical Reviews (MathSciNet): MR89k:58270
Zentralblatt MATH: 0667.57009
Digital Object Identifier: doi:10.2307/1990915
JSTOR: links.jstor.org - [DHS88] Ethan S. Devinatz, Michael J. Hopkins, and Jeffrey H. Smith, Nilpotence and stable homotopy theory. I, Ann. of Math. (2) 128 (1988), no. 2, 207–241.Mathematical Reviews (MathSciNet): MR89m:55009
Zentralblatt MATH: 0673.55008
Digital Object Identifier: doi:10.2307/1971440
JSTOR: links.jstor.org - [Dri73] V. G. Drinfel'd, Elliptic modules, Math. USSR-Sb. 23 (1973).Zentralblatt MATH: 0321.14014
- [HKR92] M. J. Hopkins, N. J. Kuhn, and D. C. Ravenel, Generalized groups characters and complex oriented cohomology theories, preprint, 1992.Mathematical Reviews (MathSciNet): MR1758754
Digital Object Identifier: doi:10.1090/S0894-0347-00-00332-5
JSTOR: links.jstor.org - [HM93] M. J. Hopkins and H. R. Miller, The spectrum $E_n$ has uniquely the structure of an $E_\infty$ ring spectrum, in preparation.
- [Hop87] M. J. Hopkins, Global methods in homotopy theory, Homotopy theory (Durham, 1985), London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, Proc. Durham Symposium, pp. 73–96.
- [Hop91] M. J. Hopkins, 1991, correspondence.
- [KM85] N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves, Annals of Math Studies, vol. 108, Princeton University Press, Princeton, 1985.
- [Lan76] P. S. Landweber, Homological properties of comodules over $M\rm U\sb\ast (M\rm U)$ and BP$\sb\ast$(BP), Amer. J. Math. 98 (1976), no. 3, 591–610.Mathematical Reviews (MathSciNet): MR54:11311
Zentralblatt MATH: 0355.55007
Digital Object Identifier: doi:10.2307/2373808
JSTOR: links.jstor.org - [LT65] J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380–387.Mathematical Reviews (MathSciNet): MR30:3094
Zentralblatt MATH: 0128.26501
Digital Object Identifier: doi:10.2307/1970622
JSTOR: links.jstor.org - [LT66] J. Lubin and J. Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94 (1966), 49–59.
- [Lub67] J. Lubin, Finite subgroups and isogenies of one-parameter formal Lie groups, Ann. of Math. (2) 85 (1967), 296–302.Mathematical Reviews (MathSciNet): MR35:189
Zentralblatt MATH: 0166.02803
Digital Object Identifier: doi:10.2307/1970443
JSTOR: links.jstor.org - [Qui71] D. M. Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971).Mathematical Reviews (MathSciNet): MR44:7566
Zentralblatt MATH: 0214.50502
Digital Object Identifier: doi:10.1016/0001-8708(71)90041-7 - [Rav86] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Orlando, FL, 1986.
- [RW77] D. C. Ravenel and W. S. Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1977), no. 3, 241–280.Mathematical Reviews (MathSciNet): MR56:6644
Zentralblatt MATH: 0373.57020
Digital Object Identifier: doi:10.1016/0022-4049(77)90070-6 - [SE62] N. E. Steenrod, Cohomology Operations, Ann. of Math. Stud., vol. 50, Princeton University Press, Princeton, 1962.
- [Tho54] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86.Mathematical Reviews (MathSciNet): MR15,890a
Zentralblatt MATH: 0057.15502
Digital Object Identifier: doi:10.1007/BF02566923 - [tDi68] T. tom Dieck, Steenrod-Operationen in Kobordismen-Theorien, Math. Z. 107 (1968), 380–401.Mathematical Reviews (MathSciNet): MR39:6302
Zentralblatt MATH: 0167.51801
Digital Object Identifier: doi:10.1007/BF01110069 - [Wil82] W. S. Wilson, Brown-Peterson homology: an introduction and sampler, CBMS Regional Conference Series in Mathematics, vol. 48, Conference Board of the Mathematical Sciences, Washington, D.C., 1982.
- [Witt88] E. Witten, The index of the Dirac operator in loop space, Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986), Lecture Notes in Math., vol. 1326, Springer-Veralg, Berlin, 1988, pp. 161–181.Mathematical Reviews (MathSciNet): MR970288
Zentralblatt MATH: 0679.58045
Digital Object Identifier: doi:10.1007/BFb0078045

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The congruence criterion for power operations in Morava E-theory
Rezk, Charles, Homology, Homotopy and Applications, 2009 - Equivariant formal group laws and complex oriented cohomology theories
Greenlees, J. P. C., Homology, Homotopy and Applications, 2001 - The power operation structure on Morava $E$–theory of height $2$ at the prime $3$
Zhu, Yifei, Algebraic & Geometric Topology, 2014
- The congruence criterion for power operations in Morava E-theory
Rezk, Charles, Homology, Homotopy and Applications, 2009 - Equivariant formal group laws and complex oriented cohomology theories
Greenlees, J. P. C., Homology, Homotopy and Applications, 2001 - The power operation structure on Morava $E$–theory of height $2$ at the prime $3$
Zhu, Yifei, Algebraic & Geometric Topology, 2014 - Extended powers and Steenrod operations in algebraic
geometry
Bisson, Terrence and Tsemo, Aristide, Homology, Homotopy and Applications, 2008 - Equivariant orientation theory
Costenoble, S. R., May, J. P., and Waner, S., Homology, Homotopy and Applications, 2001 - Odd primary Steenrod algebra, additive formal group laws, and modular invariants
INOUE, Masateru, Journal of the Mathematical Society of Japan, 2006 - Dieudonné modules and $p$–divisible groups associated with Morava $K$–theory of Eilenberg–Mac Lane spaces
Buchstaber, Victor M and Lazarev, Andrey, Algebraic & Geometric Topology, 2007 - Formal groups and the isogeny theorem
Graftieaux, Philippe, Duke Mathematical Journal, 2001 - Exterior power operations on higher $K$-groups via binary complexes
Harris, Tom, Köck, Bernhard, and Taelman, Lenny, Annals of K-Theory, 2017 - Formal groups and stable homotopy of commutative rings
Schwede, Stefan, Geometry & Topology, 2004
