Duke Mathematical Journal
- Duke Math. J.
- Volume 79, Number 2 (1995), 335-404.
Volume-minimizing cycles in Grassmann manifolds
Herman Gluck, Dana Mackenzie, and Frank Morgan
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 79, Number 2 (1995), 335-404.
Dates
First available in Project Euclid: 20 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077285156
Digital Object Identifier
doi:10.1215/S0012-7094-95-07909-5
Mathematical Reviews number (MathSciNet)
MR1344765
Zentralblatt MATH identifier
0837.53035
Subjects
Primary: 53C40: Global submanifolds [See also 53B25]
Secondary: 53C65: Integral geometry [See also 52A22, 60D05]; differential forms, currents, etc. [See mainly 58Axx] 57R20: Characteristic classes and numbers 58E99: None of the above, but in this section
Citation
Gluck, Herman; Mackenzie, Dana; Morgan, Frank. Volume-minimizing cycles in Grassmann manifolds. Duke Math. J. 79 (1995), no. 2, 335--404. doi:10.1215/S0012-7094-95-07909-5. https://projecteuclid.org/euclid.dmj/1077285156
References
- [A] F. J. Almgren, Jr., $Q$-valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc. 8 (1983), no. 2, 327–328.Mathematical Reviews (MathSciNet): MR84b:49052
Zentralblatt MATH: 0557.49021
Digital Object Identifier: doi:10.1090/S0273-0979-1983-15106-6
Project Euclid: euclid.bams/1183550129 - [B] M. Berger, Du côté de chez Pu, Ann. Sci. École Norm. Sup. (4) 5 (1972), 1–44.
- [BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458–538.Mathematical Reviews (MathSciNet): MR21:1586
Zentralblatt MATH: 0097.36401
Digital Object Identifier: doi:10.2307/2372795
JSTOR: links.jstor.org - [B1] K. A. Brakke, Minimal cones on hypercubes, J. Geom. Anal. 1 (1991), no. 4, 329–338.
- [B2] K. A. Brakke, Soap films and covering spaces, preprint, 1993.Mathematical Reviews (MathSciNet): MR1393090
Zentralblatt MATH: 0848.49025
Digital Object Identifier: doi:10.1007/BF01895675 - [CG] E. Calabi and H. Gluck, What are the best almost-complex structures on the $6$-sphere? Differential Geometry: Geometry in Mathematical Physics and Related Topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., Part 2, vol. 54, Amer. Math. Soc., Providence, 1993, pp. 99–106.
- [dR] G. de Rham, On the area of complex manifolds, Notes for the Seminar on Several Complex Variables, 1957-58, Institute for Advanced Study, Princeton.
- [DGGW1] D. DeTurck, H. Gluck, C. Gordon, and D. Webb, You cannot hear the mass of a homology class, Comment. Math. Helv. 64 (1989), no. 4, 589–617.Mathematical Reviews (MathSciNet): MR90k:58233
Zentralblatt MATH: 0694.53037
Digital Object Identifier: doi:10.1007/BF02564696 - [DGGW2] D. DeTurck, H. Gluck, C. Gordon, and D. Webb, Conformal isospectral deformations, Indiana Univ. Math. J. 41 (1992), no. 1, 99–107.Mathematical Reviews (MathSciNet): MR93c:58218
Zentralblatt MATH: 0742.58055
Digital Object Identifier: doi:10.1512/iumj.1992.41.41006 - [DGGW3] D. DeTurck, H. Gluck, C. Gordon, and D. Webb, The geometry of isospectral deformations, Differential Geometry: Riemannian Geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., Part 3, vol. 54, Amer. Math. Soc., Providence, 1993, pp. 135–154.
- [DGGW4] D. DeTurck, H. Gluck, C. Gordon, and D. Webb, The inaudible geometry of nilmanifolds, Invent. Math. 111 (1993), no. 2, 271–284.Mathematical Reviews (MathSciNet): MR93k:58222
Zentralblatt MATH: 0779.53026
Digital Object Identifier: doi:10.1007/BF01231288 - [F1] H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag, New York, 1969.
- [F2] H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974), 351–407.Mathematical Reviews (MathSciNet): MR50:1095
Zentralblatt MATH: 0289.49044
Digital Object Identifier: doi:10.1512/iumj.1974.24.24031 - [F3] H. Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965), 43–67.Mathematical Reviews (MathSciNet): MR29:5984
Zentralblatt MATH: 0136.18204
Digital Object Identifier: doi:10.2307/1994196 - [GMZ] H. Gluck, F. Morgan, and W. Ziller, Calibrated geometries in Grassmann manifolds, Comment. Math. Helv. 64 (1989), no. 2, 256–268.Mathematical Reviews (MathSciNet): MR90h:53077
Zentralblatt MATH: 0681.53039
Digital Object Identifier: doi:10.1007/BF02564674 - [GW] H. Gluck and F. Warner, Great circle fibrations of the three-sphere, Duke Math. J. 50 (1983), no. 1, 107–132.Mathematical Reviews (MathSciNet): MR84g:53056
Zentralblatt MATH: 0523.55020
Digital Object Identifier: doi:10.1215/S0012-7094-83-05003-2
Project Euclid: euclid.dmj/1077303001 - [GWY] H. Gluck, F. Warner, and C. T. Yang, Division algebras, fibrations of spheres by great spheres, and the topological determination of space by the gross behavior of its geodesics, Duke Math. J. 50 (1983), no. 4, 1041–1076.Mathematical Reviews (MathSciNet): MR85i:53047
Zentralblatt MATH: 0534.53039
Digital Object Identifier: doi:10.1215/S0012-7094-83-05044-5
Project Euclid: euclid.dmj/1077303489 - [GWZ1] H. Gluck, F. Warner, and W. Ziller, The geometry of the Hopf fibrations, Enseign. Math. (2) 32 (1986), no. 3-4, 173–198.
- [GWZ2] H. Gluck, F. Warner, and W. Ziller, Fibrations of spheres by parallel great spheres and Berger's Rigidity Theorem, Ann. Global Anal. Geom. 5 (1987), no. 1, 53–82.Mathematical Reviews (MathSciNet): MR89e:53063
Zentralblatt MATH: 0642.53046
Digital Object Identifier: doi:10.1007/BF00140754 - [GZ] H. Gluck and W. Ziller, On the volume of a unit vector field on the three-sphere, Comment. Math. Helv. 61 (1986), no. 2, 177–192.Mathematical Reviews (MathSciNet): MR87j:53063
Zentralblatt MATH: 0605.53022
Digital Object Identifier: doi:10.1007/BF02621910 - [GHV] W. Greub, S. Halperin, and R. Vanstone, Connections, Curvature, and Cohomology, Academic Press, New York, 1976.
- [Gu] W. Gu, The stable $4$-dimensional geometry of the real Grassmann manifolds, Ph.D. thesis, Univ. of Pennsylvania, 1995.
- [H1] R. Harvey, Calibrated geometries, Proc. Internat. Cong. Math., Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 797–808.
- [H2] R. Harvey, Spinors and Calibrations, Perspectives in Mathematics, vol. 9, Academic Press, Boston, 1990.
- [HL] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157.Mathematical Reviews (MathSciNet): MR85i:53058
Zentralblatt MATH: 0584.53021
Digital Object Identifier: doi:10.1007/BF02392726 - [L1] G. Lawlor, A sufficient criterion for a cone to be area-minimizing, Mem. Amer. Math. Soc. 91 (1991), no. 446, vi+111.
- [L2] G. Lawlor, Proving area minimization by slicing, preprint, 1993.
- [LM] G. Lawlor and F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math. 166 (1994), no. 1, 55–83.Mathematical Reviews (MathSciNet): MR95i:58051
Zentralblatt MATH: 0830.49028
Project Euclid: euclid.pjm/1102621245 - [M1] F. Morgan, Area-minimizing surfaces, faces of Grassmannians, and calibrations, Amer. Math. Monthly 95 (1988), no. 9, 813–822.Mathematical Reviews (MathSciNet): MR89m:53016
Zentralblatt MATH: 0672.49028
Digital Object Identifier: doi:10.2307/2322896
JSTOR: links.jstor.org - [M2] F. Morgan, Calibrations and new singularities in area-minimizing surfaces: A survey, Variational Methods (Paris, 1988) eds. H. Berestycki, J-M. Coron, and I. Ekeland, Progress in Nonlinear Differential Equations and their Applications, vol. 4, Birkhauser, Boston, 1990, pp. 329–342.
- [M3] F. Morgan, Geometric Measure Theory: A Beginner's Guide, Academic Press, Boston, 1988, second edition, 1995.
- [M4] F. Morgan, Least-volume representatives of homology classes in $G(2,\mathbf C^4)$, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 1, 127–135.
- [M5] F. Morgan, The exterior algebra $\Lambda\sp k\bf R\sp n$ and area minimization, Linear Algebra Appl. 66 (1985), 1–28.Mathematical Reviews (MathSciNet): MR86i:53036
Zentralblatt MATH: 0585.49029
Digital Object Identifier: doi:10.1016/0024-3795(85)90123-5 - [P] L.-H. Pan, Existence and uniqueness of volume-minimizing cycles in Grassmann manifolds, Ph.D. thesis, University of Pennsylvania, 1992.
- [Pe] S. Pedersen, Volumes of vector fields on spheres, Trans. Amer. Math. Soc., to appear.Mathematical Reviews (MathSciNet): MR1079056
Zentralblatt MATH: 0771.53023
Digital Object Identifier: doi:10.2307/2154338
JSTOR: links.jstor.org - [Wi] W. Wirtinger, Eine Determinantenidentität und ihre Anwendung auf analytische Gebilde und Hermitesche Massbestimmung, Monatsh. Math. Phys. 44 (1936), 343–365.Zentralblatt MATH: 0015.07602
- [Wo] J. A. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Curvature pinching theorems for minimal surfaces in complex Grassmann manifolds
Wu, Bing-Ye, Tsukuba Journal of Mathematics, 2000 - 1-Type minimal surfaces in complex Grassmann manifolds and its Gauss map
Wu, Bing-Ye, Tsukuba Journal of Mathematics, 2002 - Geodesic spheres in Grassmann manifolds
Wolf, Joseph A., Illinois Journal of Mathematics, 1963
- Curvature pinching theorems for minimal surfaces in complex Grassmann manifolds
Wu, Bing-Ye, Tsukuba Journal of Mathematics, 2000 - 1-Type minimal surfaces in complex Grassmann manifolds and its Gauss map
Wu, Bing-Ye, Tsukuba Journal of Mathematics, 2002 - Geodesic spheres in Grassmann manifolds
Wolf, Joseph A., Illinois Journal of Mathematics, 1963 - Elliptic spaces in Grassmann manifolds
Wolf, Joseph A., Illinois Journal of Mathematics, 1963 - On the complex Grassmann manifold
Babakhanian, Ari and Hironaka, Heisuke, Illinois Journal of Mathematics, 1989 - Conjugate loci in Grassmann manifolds
Wong, Yung-Chow, Bulletin of the American Mathematical Society, 1968 - Parallelizability of Grassmann manifolds
Yoshida, Toshio, Hiroshima Mathematical Journal, 1975 - Quantum Grassmann manifolds
Š\soft{t}ovíček, P., Communications in Mathematical Physics, 1993 - A Morse function on Grassmann manifolds
Hangan, Theodor, Journal of Differential Geometry, 1968 - Degrees of maps between Grassmann manifolds
Sankaran, Parameswaran and Sarkar, Swagata, Osaka Journal of Mathematics, 2009
