Duke Mathematical Journal

The work of John F. Nash Jr. in game theory: Nobel Seminar, 8 December 1994

Harold W. Kuhn, John C. Harsanyi, Reinhard Selten, Jörgen W. Weibull, Eric van Damme, John F. Nash, Jr., and Peter Hammerstein

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 81, Number 1 (1995), 1-29.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077245457

Digital Object Identifier
doi:10.1215/S0012-7094-95-08102-2

Mathematical Reviews number (MathSciNet)
MR1381966

Zentralblatt MATH identifier
0849.01037

Subjects
Primary: 90-03: Historical (must also be assigned at least one classification number from Section 01)
Secondary: 01A70: Biographies, obituaries, personalia, bibliographies 90Dxx

Citation

Kuhn, Harold W.; Harsanyi, John C.; Selten, Reinhard; Weibull, Jörgen W.; van Damme, Eric; Nash, Jr., John F.; Hammerstein, Peter. The work of John F. Nash Jr. in game theory: Nobel Seminar, 8 December 1994. Duke Math. J. 81 (1995), no. 1, 1--29. doi:10.1215/S0012-7094-95-08102-2. https://projecteuclid.org/euclid.dmj/1077245457


Export citation

References

  • [1] K. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica 22 (1954), 265–290.
  • [2] R. J. Aumann, What is game theory trying to accomplish? Frontiers of economics (Sannäs, 1983) eds. K. Arrow and S. Honkapohja, Blackwell, Oxford, 1985, pp. 28–99.
  • [3] R. J. Aumann, Game theory, The New Palgrave: A Dictionary of Economics eds. J. Eatwell, M. Milgate, and P. Newman, Stockton Press, New York, 1987, pp. 460–482.
  • [4] R. Aumann and A. Brandenburger, Epistemic conditions for Nash equilibrium, working paper 91-042, Harvard Business School.
  • [5] K. Binmore, A. Rubinstein, and A. Wolinsky, The Nash bargaining solution in economic modelling, Rand J. Econom. 17 (1986), no. 2, 176–188.
  • [6] J. Björnerstedt and J. Weibull, “Nash equilibrium and evolution by imitation” in The Rational Foundations of Economic Behavior, ed. by K. Arrow et al., Macmillan, New York, forthcoming.
  • [7] I. Bomze, Noncooperative two-person games in biology: a classification, Internat. J. Game Theory 15 (1986), no. 1, 31–57.
  • [8] H. Carlsson and E. van Damme, Equilibrium selection in stag hunt games, Frontiers of Game Theory eds. K. Binmore and A. Kirman, Mass. Inst. of Technology Press, Cambridge, 1993, pp. 237–253.
  • [9] G. Debreu, Economic theory in the mathematical mode, in Les Prix Nobel 1983, reprinted in Amer. Econom. Rev. 74 (1984), 267–278.
  • [10] I. Eshel and M. W. Feldman, Initial increase of new mutants and some continuity properties of ESS in two locus systems, Amer. Naturalist 124 (1984), 631–640.
  • [11] R. A. Fisher, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1930.
  • [12] M. M. Flood, Some experimental games, Management Science 5 (1958), 5–26.
  • [13] M. Friedman, Essays in Positive Economics, University of Chicago Press, Chicago, 1953.
  • [14] J. B. S. Haldane, The Causes of Evolution, Longman, London, 1932.
  • [15] P. Hammerstein, Darwinian adaptation, population genetics and the streetcar theory of evolution, J. Math. Biol., in press.
  • [16] P. Hammerstein and R. Selten, Game theory and evolutionary biology, Handbook of Game Theory with Economic Applications, Vol. 2 eds. R. J. Aumann and S. Hart, Handbooks in Econom., vol. 11, Elsevier, Amsterdam, 1994, pp. 929–993.
  • [17] J. C. Harsanyi, Approaches to the bargaining problem before and after the theory of games: A critical discussion of Zeuthen's, Hicks', and Nash's theories, Econometrica 24 (1956), 144–157.
  • [18] J. C. Harsanyi, A simplified bargaining model for the $n$-person cooperative game, Internat. Econom. Rev. 4 (1963), 194–220.
  • [19]1 J. C. Harsanyi, Games with incomplete information played by “Bayesian” players. I. The basic model, Management Sci. 14 (1967), 159–182.
  • [19]2 J. C. Harsanyi, Games with incomplete information played by “Bayesian” players. II. Bayesian equilibrium points, Management Sci. 14 (1968), 320–334.
  • [19]3 J. C. Harsanyi, Games with incomplete information played by “Bayesian” players. III. The basic probability distribution of the game, Management Sci. 14 (1968), 486–502.
  • [20] J. C. Harsanyi, Games with randomly disturbed payoffs: a new rationale for mixed-strategy equilibrium points, Internat. J. Game Theory 2 (1973), no. 1, 1–23.
  • [21] J. C. Harsanyi, An equilibrium-point interpretation of stable sets and a proposed alternative definition, Management Sci. 20 (1973/74), 1472–1495.
  • [22] J. C. Harsanyi and R. Selten, A generalized Nash solution for two-person bargaining games with incomplete information, Management Sci. 18 (1971/72), P80–P106.
  • [23] J. C. Harsanyi and R. Selten, A General Theory of Equilibrium Selection in Games, Mass Inst. of Technology Press, Cambridge, 1988.
  • [24] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems, London Mathematical Society Student Texts, vol. 7, Cambridge University Press, Cambridge, 1988.
  • [25] G. K. Kalisch, J. W. Milnor, J. F. Nash, Jr., and E. D. Nering, Some experimental $n$-person games, Decision Processes eds. R. M. Thrall, C. H. Coombs, and R. L. Davis, Wiley, New York, 1954, pp. 301–327.
  • [26] S. Karlin, General two-locus selection models: some objectives, results and interpretations, Theoret. Population Biology 7 (1975), 364–398.
  • [27] E. Kohlberg and J.-F. Mertens, On the strategic stability of equilibria, Econometrica 54 (1986), no. 5, 1003–1037.
  • [28] R. Leonard, Reading Cournot, reading Nash: The creation and stabilization of the Nash equilibrium, Econom. J. 104 (1994), 492–511.
  • [29] R. Leonard, From parlor games to social science: Von Neumann, Morgenstern, and the creation of game theory, 1928–1944, J. Econom. Literature, in press.
  • [30] J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, Cambridge, 1982.
  • [31] J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature 246 (1973), 15–18.
  • [32] P. A. P. Moran, On the nonexistence of adaptive topographies, Ann. Human Genetics 27 (1964), 338–343.
  • [33] O. Morgenstern, The collaboration between Oskar Morgenstern and John Von Neumann on the theory of games, J. Econom. Literature 14 (1976), 805–816.
  • [34] J. H. Nachbar, “Evolutionary” selection dynamics in games: convergence and limit properties, Internat. J. Game Theory 19 (1990), no. 1, 59–89.
  • [35] J. F. Nash, Jr., Equilibrium points in $n$-person games, Proc. Nat. Acad. Sci. USA 36 (1950), 48–49.
  • [36] J. F. Nash, Jr., Non-cooperative games, Ph.D. thesis, Mathematics Department, Princeton University, 1950.
  • [37] J. F. Nash, Jr., The bargaining problem, Econometrica 18 (1950), 155–162.
  • [38] J. F. Nash, Jr., Non-cooperative games, Ann. of Math. (2) 54 (1951), 286–295.
  • [39] J. F. Nash, Jr., Two-person cooperative games, Econometrica 21 (1953), 128–140.
  • [40] J. Robinson, An iterative method of solving a game, Ann. of Math. (2) 54 (1951), 296–301.
  • [41] A. E. Roth, The early history of experimental economics, J. Hist. Econom. Thought 15 (1993), 184–209.
  • [42] A. Rubinstein, Perfect equilibrium in a bargaining model, Econometrica 50 (1982), no. 1, 97–109.
  • [43] A. Rubinstein, Z. Safra, and W. Thomson, On the interpretation of the Nash bargaining solution and its extension to non-expected utility preferences, Econometrica 60 (1992), no. 5, 1171–1186.
  • [44] T. C. Schelling, The Strategy of Conflict, Harvard University Press, Cambridge, 1960.
  • [45] R. Selten, Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit, Z. Gesamte Staatswissenschaft 121 (1965), 301–324 and 667–689.
  • [46] R. Selten, Reexamination of the perfectness concept for equilibrium points in extensive games, Internat. J. Game Theory 4 (1975), no. issue 1-2, 25–55.
  • [47] R. Selten, In search of a better understanding of economic behavior, The Makers of Modern Economics, Vol. I ed. A. Heertje, Harvester Wheatscheaf, Hertfordshire, 1993, pp. 155–139.
  • [48] P. Taylor, Evolutionarily stable strategies with two types of player, J. Appl. Probab. 16 (1979), no. 1, 76–83.
  • [49] P. Taylor and L. Jonker, Evolutionarily stable strategies and game dynamics, Math. Biosci. 40 (1978), no. 1-2, 145–156.
  • [50] E. van Damme, Stability and Perfection of Nash Equilibria, Springer-Verlag, Berlin, 1987.
  • [51] J. Von Neumann, Zur Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928), 295–320.
  • [52] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, 1944.
  • [53] J. Weibull, The “as if” approach to game theory: Three positive results and four obstacles, European Econom. Rev. 38 (1994), 868–882.
  • [54] J. Weibull, Evolutionary Game Theory, Mass. Inst. of Technology Press, Cambridge, forthcoming.
  • [55] S. Wright, Evolution in Mendelian populations, Genetics 16 (1931), 97–159.