Duke Mathematical Journal
- Duke Math. J.
- Volume 82, Number 2 (1996), 349-367.
Geometry of -jets
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 82, Number 2 (1996), 349-367.
Dates
First available in Project Euclid: 19 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077245037
Digital Object Identifier
doi:10.1215/S0012-7094-96-08216-2
Mathematical Reviews number (MathSciNet)
MR1387233
Zentralblatt MATH identifier
0882.14007
Subjects
Primary: 14H25: Arithmetic ground fields [See also 11Dxx, 11G05, 14Gxx]
Secondary: 14G25: Global ground fields 14H40: Jacobians, Prym varieties [See also 32G20]
Citation
Buium, Alexandru. Geometry of $p$ -jets. Duke Math. J. 82 (1996), no. 2, 349--367. doi:10.1215/S0012-7094-96-08216-2. https://projecteuclid.org/euclid.dmj/1077245037
References
- [B1] A. Buium, Geometry of differential polynomial functions. I. Algebraic groups, Amer. J. Math. 115 (1993), no. 6, 1385–1444.Mathematical Reviews (MathSciNet): MR95c:12011
Zentralblatt MATH: 0797.14016
Digital Object Identifier: doi:10.2307/2374970
JSTOR: links.jstor.org - [B2] A. Buium, Geometry of differential polynomial functions. II. Algebraic curves, Amer. J. Math. 116 (1994), no. 4, 785–818.Mathematical Reviews (MathSciNet): MR96a:14039
Zentralblatt MATH: 0829.14018
Digital Object Identifier: doi:10.2307/2375002
JSTOR: links.jstor.org - [B3] A. Buium, Intersections in jet spaces and a conjecture of S. Lang, Ann. of Math. (2) 136 (1992), no. 3, 557–567.Mathematical Reviews (MathSciNet): MR93j:14055
Zentralblatt MATH: 0817.14021
Digital Object Identifier: doi:10.2307/2946600
JSTOR: links.jstor.org - [B4] A. Buium, Effective bound for the geometric Lang conjecture, Duke Math. J. 71 (1993), no. 2, 475–499.Mathematical Reviews (MathSciNet): MR95c:14055
Zentralblatt MATH: 0812.14029
Digital Object Identifier: doi:10.1215/S0012-7094-93-07120-7
Project Euclid: euclid.dmj/1077290064 - [BV] A. Buium and F. Voloch, The Mordell conjecture of characteristic $P$: an explicit bound, to appear in Compositio Math.
- [Co1] R. Coleman, Torsion points on curves and $p$-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168.Mathematical Reviews (MathSciNet): MR86j:14014
Zentralblatt MATH: 0578.14038
Digital Object Identifier: doi:10.2307/1971194
JSTOR: links.jstor.org - [Co2] R. Coleman, Ramified torsion points on curves, Duke Math. J. 54 (1987), no. 2, 615–640.Mathematical Reviews (MathSciNet): MR89c:14033
Zentralblatt MATH: 0626.14022
Digital Object Identifier: doi:10.1215/S0012-7094-87-05425-1
Project Euclid: euclid.dmj/1077305673 - [Fu] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.
- [Gr] M. Greenberg, Schemata over local rings, Ann. of Math. (2) 73 (1961), 624–648.Mathematical Reviews (MathSciNet): MR23:A3745
Zentralblatt MATH: 0115.39004
Digital Object Identifier: doi:10.2307/1970321
JSTOR: links.jstor.org - [EGA] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361.
- [K] E. Kolchin, Differential algebra and algebraic groups, Academic Press, New York, 1973.
- [L1] S. Lang, On quasi algebraic closure, Ann. of Math. (2) 55 (1952), 373–390.Mathematical Reviews (MathSciNet): MR13,726d
Zentralblatt MATH: 0046.26202
Digital Object Identifier: doi:10.2307/1969785
JSTOR: links.jstor.org - [L2] S. Lang, Some applications of the local uniformization theorem, Amer. J. Math. 76 (1954), 362–374.Mathematical Reviews (MathSciNet): MR16,7a
Zentralblatt MATH: 0058.27201
Digital Object Identifier: doi:10.2307/2372578
JSTOR: links.jstor.org - [MD] M. Martin-Deschamps, Propriétés de descente des variétés à fibré cotangent ample, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 39–64.
- [Ray1] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), no. 1, 207–233.Mathematical Reviews (MathSciNet): MR84c:14021
Zentralblatt MATH: 0564.14020
Digital Object Identifier: doi:10.1007/BF01393342 - [Ray2] M. Raynaud, Around the Mordell conjecture for function fields and a conjecture of Serge Lang, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 1–19.
- [R] J. F. Ritt, Differential Algebra, American Mathematical Society Colloquium Publications, Vol. XXXIII, American Mathematical Society, New York, N. Y., 1950.
- [S] J.-P. Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979.
- [Sil] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986.
- [T] H. Tango, On the behavior of extensions of vector bundles under the Frobenius map, Nagoya Math. J. 48 (1972), 73–89.Mathematical Reviews (MathSciNet): MR47:3401
Zentralblatt MATH: 0239.14007
Project Euclid: euclid.nmj/1118798788

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The basic geometry of Witt vectors, I The affine case
Borger, James, Algebra & Number Theory, 2011 - Geometry of *-Finite Types
Newelski, Ludomir, Journal of Symbolic Logic, 1999 - Non-Abelian Representations of Geometries
Ivanov, A. A., , 2001
- The basic geometry of Witt vectors, I The affine case
Borger, James, Algebra & Number Theory, 2011 - Geometry of *-Finite Types
Newelski, Ludomir, Journal of Symbolic Logic, 1999 - Non-Abelian Representations of Geometries
Ivanov, A. A., , 2001 - The homotopy principle for maps with singularities of given $\mathscr{K}$-invariant class
ANDO, Yoshifumi, Journal of the Mathematical Society of Japan, 2007 - Cohomology Theory in Birational Geometry
Wang, Chin-Lung, Journal of Differential Geometry, 2002 - On parabolic geometry, II
Biswas, Indranil, Journal of Mathematics of Kyoto University, 2009 - Global geometry and $C^1$ convex extensions of 1-jets
Azagra, Daniel and Mudarra, Carlos, Analysis & PDE, 2019 - The Geometry of Weakly Minimal Types
Buechler, Steven, Journal of Symbolic Logic, 1985 - Nonarchimedean geometry of Witt vectors
Kedlaya, Kiran S., Nagoya Mathematical Journal, 2013 - On the Geometry of the Conformal Group in Spacetime
Gresnigt, N. G. and Renaud, P. F., Bulletin of the Belgian Mathematical Society - Simon Stevin, 2010
