Duke Mathematical Journal
- Duke Math. J.
- Volume 83, Number 1 (1996), 19-50.
Integrable systems and algebraic surfaces
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 83, Number 1 (1996), 19-50.
Dates
First available in Project Euclid: 19 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077244246
Digital Object Identifier
doi:10.1215/S0012-7094-96-08302-7
Mathematical Reviews number (MathSciNet)
MR1408545
Zentralblatt MATH identifier
0857.58024
Subjects
Primary: 14H40: Jacobians, Prym varieties [See also 32G20]
Secondary: 14J25: Special surfaces {For Hilbert modular surfaces, see 14G35} 17B65: Infinite-dimensional Lie (super)algebras [See also 22E65] 58F07
Citation
Hurtubise, J. C. Integrable systems and algebraic surfaces. Duke Math. J. 83 (1996), no. 1, 19--50. doi:10.1215/S0012-7094-96-08302-7. https://projecteuclid.org/euclid.dmj/1077244246
References
- [AHH1] M. R. Adams, J. Harnad, and J. Hurtubise, Isospectral Hamiltonian flows in finite and infinite dimensions II. Integration of flows, Comm. Math. Phys. 134 (1990), no. 3, 555–585.Mathematical Reviews (MathSciNet): MR92a:58055
Zentralblatt MATH: 0717.58051
Digital Object Identifier: doi:10.1007/BF02098447
Project Euclid: euclid.cmp/1104201822 - [AHH2] M. R. Adams, J. Harnad, and J. Hurtubise, Darboux coordinates and Liouville-Arnold integration in loop algebras, Comm. Math. Phys. 155 (1993), no. 2, 385–413.Mathematical Reviews (MathSciNet): MR94j:58071
Zentralblatt MATH: 0791.58047
Digital Object Identifier: doi:10.1007/BF02097398
Project Euclid: euclid.cmp/1104253285 - [AHH3] M. R. Adams, J. Harnad, and J. Hurtubise, Darboux coordinates and Serre duality, CRM preprint, 1994.
- [AHH4] M. R. Adams, J. Harnad, and J. Hurtubise, Coadjoint Orbits, Spectral Curves and Darboux Coordinates, The Geometry of Hamiltonian Systems (Berkeley, CA, 1989) ed. T. Ratiu, Publ. MSRI, vol. 22, Springer-Verlag, New York, 1991, pp. 9–21.
- [AHP] M. R. Adams, J. Harnad, and E. Previato, Isospectral Hamiltonian flows in finite and infinite dimensions I. Generalized Moser systems and moment maps into loop algebras, Comm. Math. Phys. 117 (1988), no. 3, 451–500.Mathematical Reviews (MathSciNet): MR89k:58112
Zentralblatt MATH: 0659.58022
Digital Object Identifier: doi:10.1007/BF01223376
Project Euclid: euclid.cmp/1104161743 - [AvM1] M. Adler and P. van Moerbeke, Kowalewski's asymptotic method, Kac-Moody Lie algebras and regularization, Comm. Math. Phys. 83 (1982), no. 1, 83–106.Mathematical Reviews (MathSciNet): MR83c:58036
Zentralblatt MATH: 0491.58017
Digital Object Identifier: doi:10.1007/BF01947073
Project Euclid: euclid.cmp/1103920747 - [AvM2] M. Adler and P. van Moerbeke, The complex geometry of the Kowalewski-Painlevé analysis, Invent. Math. 97 (1989), no. 1, 3–51.Mathematical Reviews (MathSciNet): MR90f:58079
Zentralblatt MATH: 0678.58020
Digital Object Identifier: doi:10.1007/BF01850654 - [AvM3]1 M. Adler and P. van Moerbeke, Completely integrable systems, Euclidean Lie algebras, and curves, Adv. in Math. 38 (1980), no. 3, 267–317.Mathematical Reviews (MathSciNet): MR83m:58041
Zentralblatt MATH: 0455.58017
Digital Object Identifier: doi:10.1016/0001-8708(80)90007-9 - [AvM3]2 M. Adler and P. van Moerbeke, Linearization of Hamiltonian systems, Jacobi varieties and representation theory, Adv. in Math. 38 (1980), no. 3, 318–379.Mathematical Reviews (MathSciNet): MR83m:58042
Zentralblatt MATH: 0455.58010
Digital Object Identifier: doi:10.1016/0001-8708(80)90008-0 - [A] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer Verlag, Berlin, 1978.
- [BPV] W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer Verlag, Berlin, 1984.
- [B] A. Beauville, Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables, Acta Math. 164 (1990), no. 3-4, 211–235.Mathematical Reviews (MathSciNet): MR91m:14044
Zentralblatt MATH: 0712.58031
Digital Object Identifier: doi:10.1007/BF02392754 - [B2] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984).Mathematical Reviews (MathSciNet): MR86c:32030
Zentralblatt MATH: 0537.53056
Project Euclid: euclid.jdg/1214438181 - [BCGGG] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths, Exterior Differential Systems, MSRI Publications, vol. 18, Springer-Verlag, New York, 1991.
- [C] W. L. Chow, On compact complex analytic varieties, Amer. J. Math. 71 (1949), 893–914.Mathematical Reviews (MathSciNet): MR11,389f
Zentralblatt MATH: 0041.48302
Digital Object Identifier: doi:10.2307/2372375
JSTOR: links.jstor.org - [DM] R. Donagi and E. Markman, Cubics, integrable systems and Calabi-Yau three-folds, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Mathematical Conference Proceedings, vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 199–221.
- [FK] H. M. Farkas and I. Kra, Riemann Surfaces, Graduate Texts in Math., vol. 71, Springer, New York, 1980.
- [F] J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968), 511–521.Mathematical Reviews (MathSciNet): MR38:5778
Zentralblatt MATH: 0176.18401
Digital Object Identifier: doi:10.2307/2373541
JSTOR: links.jstor.org - [FRS] I. B. Frenkel, A. G. Reiman, and M. A. Semenov-Tian-Sansky, Graded Lie algebras and completely integrable dynamical systems, Dokl. Akad. Nauk SSSR 247 (1979), no. 4, 802–805.
- [GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.
- [HH] J. Harnad and J. Hurtubise, Generalized tops and moment maps to loop algebras, J. Math. Phys. 32 (1991), no. 7, 1780–1787.Mathematical Reviews (MathSciNet): MR92m:58060
Zentralblatt MATH: 0733.70012
Digital Object Identifier: doi:10.1063/1.529241 - [Hi1] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126.Mathematical Reviews (MathSciNet): MR89a:32021
Zentralblatt MATH: 0634.53045
Digital Object Identifier: doi:10.1112/plms/s3-55.1.59 - [Hi2] N. J. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987), no. 1, 91–114.Mathematical Reviews (MathSciNet): MR88i:58068
Zentralblatt MATH: 0627.14024
Digital Object Identifier: doi:10.1215/S0012-7094-87-05408-1
Project Euclid: euclid.dmj/1077305506 - [H] J. C. Hurtubise, Finite-dimensional coadjoint orbits in loop algebras, Lett. Math. Phys. 30 (1994), no. 2, 99–104.Mathematical Reviews (MathSciNet): MR95c:22026
Zentralblatt MATH: 0797.17015
Digital Object Identifier: doi:10.1007/BF00939697 - [HK] J. C. Hurtubise and N. Kamran, Projective connections, double fibrations, and formal neighbourhoods of lines, Math. Ann. 292 (1992), no. 3, 383–409.Mathematical Reviews (MathSciNet): MR93f:32033
Zentralblatt MATH: 0738.58051
Digital Object Identifier: doi:10.1007/BF01444628 - [I] A. Iarrobino, Hilbert scheme of points: overview of last ten years, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. (2), vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 297–320.
- [Kr] I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russian Math. Surveys 32 (1977), 185–213.
- [KrN] I. M. Krichever and S. P. Novikov, Holomorphic bundles over algebraic curves and nonlinear equations, Russian Math. Surveys 32 (1980), 53–79.
- [M] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or $K-3$ surface, Invent. Math. 77 (1984), no. 1, 101–116.Mathematical Reviews (MathSciNet): MR85j:14016
Zentralblatt MATH: 0565.14002
Digital Object Identifier: doi:10.1007/BF01389137 - [RS]1 A. G. Reyman and M. A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations, Invent. Math. 54 (1979), no. 1, 81–100.Mathematical Reviews (MathSciNet): MR81b:58021
Zentralblatt MATH: 0403.58004
Digital Object Identifier: doi:10.1007/BF01391179 - [RS]2 A. G. Reyman and M. A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II, Invent. Math. 63 (1981), no. 3, 423–432.Mathematical Reviews (MathSciNet): MR82k:58049
Zentralblatt MATH: 0442.58016
Digital Object Identifier: doi:10.1007/BF01389063 - [S] E. K. Sklyanin, Separation of variables in the classical integrable $\rm SL(3)$ magnetic chain, Comm. Math. Phys. 150 (1992), no. 1, 181–191.Mathematical Reviews (MathSciNet): MR93k:82020
Zentralblatt MATH: 0764.35106
Digital Object Identifier: doi:10.1007/BF02096572
Project Euclid: euclid.cmp/1104251789 - [Sc] D. R. D. Scott, Classical functional Bethe ansatz for $\rm SL(N)$: separation of variables for the magnetic chain, J. Math. Phys. 35 (1994), no. 11, 5831–5843.Mathematical Reviews (MathSciNet): MR95j:82021
Zentralblatt MATH: 0822.58029
Digital Object Identifier: doi:10.1063/1.530712 - [vM] P. van Moerbeke, Introduction to algebraic integrable systems and their Painlevé analysis, Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos Pure Math., vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 107–131.
See also
- See also: Jacques Hurtubise. Erratum to the paper “Integrable systems and algebraic surfaces,” vol. 83 (1996) pp. 19–50. Duke Math. J. Vol. 84, No. 3 (1996), pp. 815–815.Project Euclid: euclid.dmj/1077244044

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Canonical fixed parts of fibred algebraic surfaces
Konno, Kazuhiro, Tohoku Mathematical Journal, 2010 - Representations of the Kauffman bracket skein algebra, II: Punctured surfaces
Bonahon, Francis and Wong, Helen, Algebraic & Geometric Topology, 2017 - Weierstrass-type representations for timelike surfaces
Yasumoto, Masashi, , 2018
- Canonical fixed parts of fibred algebraic surfaces
Konno, Kazuhiro, Tohoku Mathematical Journal, 2010 - Representations of the Kauffman bracket skein algebra, II: Punctured surfaces
Bonahon, Francis and Wong, Helen, Algebraic & Geometric Topology, 2017 - Weierstrass-type representations for timelike surfaces
Yasumoto, Masashi, , 2018 - A function algebra on Riemann surfaces
Nakai, Mitsuru, Nagoya Mathematical Journal, 1959 - Negative curves on algebraic surfaces
Bauer, Thomas, Harbourne, Brian, Knutsen, Andreas Leopold, Küronya, Alex, Müller-Stach, Stefan, Roulleau, Xavier, and Szemberg, Tomasz, Duke Mathematical Journal, 2013 - Arithmetic upon an algebraic surface
Segre, B., Bulletin of the American Mathematical Society, 1945 - Riemann surfaces and AF-algebras
Nikolaev, Igor, Annals of Functional Analysis, 2016 - Zariski on Algebraic Surfaces
Lefschetz, Solomon, Bulletin of the American Mathematical Society, 1936 - Algebraic surfaces with k*-action
Orlik, P. and Wagreich, P., Acta Mathematica, 1977 - Algebraic cycles and Todorov surfaces
Laterveer, Robert, Kyoto Journal of Mathematics, 2018
