Duke Mathematical Journal

Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures

Manfred Kolster, Thong Nguyen Quang Do, and Vincent Fleckinger

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 84, Number 3 (1996), 679-717.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077244040

Digital Object Identifier
doi:10.1215/S0012-7094-96-08421-5

Mathematical Reviews number (MathSciNet)
MR1408541

Zentralblatt MATH identifier
0863.19003

Subjects
Primary: 11R70: $K$-theory of global fields [See also 19Fxx]
Secondary: 11R23: Iwasawa theory 11R34: Galois cohomology [See also 12Gxx, 19A31] 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27] 19F27: Étale cohomology, higher regulators, zeta and L-functions [See also 11G40, 11R42, 11S40, 14F20, 14G10]

Citation

Kolster, Manfred; Nguyen Quang Do, Thong; Fleckinger, Vincent. Twisted $S$ -units, $p$ -adic class number formulas, and the Lichtenbaum conjectures. Duke Math. J. 84 (1996), no. 3, 679--717. doi:10.1215/S0012-7094-96-08421-5. https://projecteuclid.org/euclid.dmj/1077244040


Export citation

References

  • [1] A. Beilinson, Higher regulators and values of $L$-functions, J. Soviet Math 30 (1984), 2036–2070.
  • [2] A. Beilinson, Polylogarithms and cyclotomic elements, preprint, 1990.
  • [3] S. Bloch, Higher regulators, algebraic $K$-theory, and zeta functions of elliptic curves, lecture notes, University of California, Irvine, 1977.
  • [4] A. Borel, Cohomologie de $\rm SL\sbn$ et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613–636.
  • [5] S. Bloch and K. Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400.
  • [6] J.-L. Cathelineau, Homologie du groupe linéaire et polylogarithmes (d'après A. B. Goncharov et d'autres), Astérisque (1993), no. 216, Exp. No. 772, 5, 311–341, Séminaire Bourbaki 1992/93.
  • [7] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over $\bf Q$ (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297.
  • [8] W.-G. Dwyer and E. M. Friedlander, Algebraic and etale $K$-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280.
  • [9] L. J. Federer and B. H. Gross, Regulators and Iwasawa modules, Invent. Math. 62 (1981), no. 3, 443–457, (with an Appendix by W. Sinnott).
  • [10] V. Fleckinger and T. Nguyen Quang Do, Bases normales, unités et conjecture faible de Leopoldt, Manuscripta Math. 71 (1991), no. 2, 183–195.
  • [11] C. Greither, Cyclic Galois extensions and normal bases, Trans. Amer. Math. Soc. 326 (1991), no. 1, 307–343.
  • [12] C. Greither, Stable norm groups and norm-coherent sequences of units, preprint, 1993.
  • [13] C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449–499.
  • [14] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263–284.
  • [15] M. Gros, Régulateurs syntomiques et valeurs de fonctions $L$ $p$-adiques. I, Invent. Math. 99 (1990), no. 2, 293–320, (with an appendix by M. Kurihara).
  • [16] M. Gros, Régulateurs syntomiques et valeurs de fonctions $L\;p$-adiques. II, Invent. Math. 115 (1994), no. 1, 61–79.
  • [17] B. H. Gross, On the values of Artin $L$-functions, unpublished, 1980.
  • [18] R. Gold and Y. Kim, Bases for cyclotomic units, Compositio Math. 71 (1989), no. 1, 13–27.
  • [19] K. Haberland, Galois cohomology of algebraic number fields, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [20] K. Iwasawa, On $\bf Z\sbl$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326.
  • [21] B. Kahn, On the Lichtenbaum-Quillen conjecture, Algebraic $K$-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 147–166.
  • [22] M. Kolster, An idelic approach to the wild kernel, Invent. Math. 103 (1991), no. 1, 9–24.
  • [23] M. Kolster, Remarks on étale $K$-theory and Leopoldt's conjecture, Séminaire de Théorie des Nombres, Paris, 1991–92, Progr. Math., vol. 116, Birkhäuser Boston, Boston, MA, 1993, pp. 37–62.
  • [24] M. Kolster, $K$-theory and Arithmetic, Fields Inst. Monogr., Amer. Math. Soc., Providence, to appear.
  • [25] L. V. Kuz'min, The Tate module of algebraic number fields, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 267–327.
  • [26] M. Levine, The indecomposable $K\sb 3$ of fields, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 255–344.
  • [27] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic $K$-theory, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 489–501. Lecture Notes in Math., Vol. 342.
  • [28] B. Mazur and A. Wiles, Class fields of abelian extensions of $\bf Q$, Invent. Math. 76 (1984), no. 2, 179–330.
  • [29] A. S. Merkurjev and A. A. Suslin, On the $K\sb 3$ for a field, Math. USSR Izv. 36 (1990), 561–565.
  • [30] J. Neukirch, The Beĭlinson conjecture for algebraic number fields, Beĭlinson's conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 193–247.
  • [31] T. Nguyen-Quang-Do, Sur la $\bf Z\sb p$-torsion de certains modules galoisiens, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 2, 27–46.
  • [32] T. Nguyen Quang Do, $K_2$ et conjecture $p$-adique de Gross, preprint, 1993.
  • [33] T. Nguyen Quang Do, $K\sb 3$ et formules de Riemann-Hurwitz $p$-adiques, $K$-Theory 7 (1993), no. 5, 429–441.
  • [34] D. Ramakrishnan, Regulators, algebraic cycles, and values of $L$-functions, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 183–310.
  • [35] P. Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979), no. 2, 181–205.
  • [36] J.-P. Serre, Corps locaux, Hermann, Paris, 1968.
  • [37] W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), no. 2, 181–234.
  • [38] C. Soulé, $K$-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295.
  • [39] C. Soulé, On higher $p$-adic regulators, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 372–401.
  • [40] C. Soulé, Éléments cyclotomiques en $K$-théorie, Astérisque (1987), no. 147-148, 225–257, 344.
  • [41] A. A. Suslin, $K\sb 3$ of a field and the Bloch group, Proc. Steklov Inst. Math. 4 (1991), 217–239.
  • [42] J. Villemot, Etude du quotient des unités semi-locales par les unités cyclotomiques dans les $\mathbb Z_p$-extensions des corps de nombres abéliens réels, Thèse, Orsay, 1981.
  • [43] L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982.
  • [44] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540.
  • [45] D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic $K$-theory of fields, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 391–430.

See also

  • See also: M. Kolster, T. Nguyen Quang Do, V. Fleckinger. Correction to “Twisted $S$-units, $p$-adic class number formulas, and the Lichtenbaum conjectures”. Duke Math. J. Vol. 90, No. 3 (1997), pp. 641–643.