Duke Mathematical Journal

Combinatorics of Fulton’s essential set

Kimmo Eriksson and Svante Linusson

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 85, Number 1 (1996), 61-76.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077243036

Digital Object Identifier
doi:10.1215/S0012-7094-96-08502-6

Mathematical Reviews number (MathSciNet)
MR1412437

Zentralblatt MATH identifier
0859.05003

Subjects
Primary: 05E15: Combinatorial aspects of groups and algebras [See also 14Nxx, 22E45, 33C80]

Citation

Eriksson, Kimmo; Linusson, Svante. Combinatorics of Fulton’s essential set. Duke Math. J. 85 (1996), no. 1, 61--76. doi:10.1215/S0012-7094-96-08502-6. https://projecteuclid.org/euclid.dmj/1077243036


Export citation

References

  • [1] G. Baxter, On fixed points of the composite of commuting functions, Proc. Amer. Math. Soc. 15 (1964), 851–855.
  • [2] S. Billey, W. Jockusch, and R. P. Stanley, Some combinatorial properties of Schubert polynomials, J. Algebraic Combin. 2 (1993), no. 4, 345–374.
  • [3] F. R. K. Chung, R. L. Graham, V. E. Hoggatt, and M. Kleiman, The number of Baxter permutations, J. Combin. Theory Ser. A 24 (1978), no. 3, 382–394.
  • [4] R. Cori, S. Dulucq, and G. Viennot, Shuffle of parenthesis systems and Baxter permutations, J. Combin. Theory Ser. A 43 (1986), no. 1, 1–22.
  • [5] K. Eriksson and S. Linusson, The size of Fulton's essential set, Sém. Lothar. Combin. 34 (1995), Art. B34l, approx. 19 pp. (electronic).
  • [6] K. Eriksson and S. Linusson, Intersections of several flags and a generalization of permutation matrices to higher dimensions, extended abstract to appear in Proc. Formal Power Ser. Algebraic Combin.
  • [7] W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 65 (1992), no. 3, 381–420.
  • [8] W. Fulton, Young tableaux with applications to representation theory and geometry, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997.
  • [9] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994.
  • [10] S. Linusson, Studies in Algebraic and Topological Combinatorics, Ph.D. thesis, KTH, Stockholm, 1995.
  • [11] I. G. Macdonald, Notes on Schubert polynomials, Département de mathémathiques et d'informatique, Université du Québec, Montréal, 1991.
  • [12] E. Pascal, Die Determinanten, Teubner, Leipzig, 1900.
  • [13] G. Viennot, Une forme géométrique de la correspondance de Robinson-Schensted, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), Springer, Berlin, 1977, 29–58. Lecture Notes in Math., Vol. 579.