Duke Mathematical Journal
- Duke Math. J.
- Volume 87, Number 3 (1997), 409-480.
Canonical bases in tensor products and graphical calculus for
Igor B. Frenkel and Mikhail G. Khovanov
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 87, Number 3 (1997), 409-480.
Dates
First available in Project Euclid: 19 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077242324
Digital Object Identifier
doi:10.1215/S0012-7094-97-08715-9
Mathematical Reviews number (MathSciNet)
MR1446615
Zentralblatt MATH identifier
0883.17013
Subjects
Primary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23]
Secondary: 17B10: Representations, algebraic theory (weights)
Citation
Frenkel, Igor B.; Khovanov, Mikhail G. Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2)$. Duke Math. J. 87 (1997), no. 3, 409--480. doi:10.1215/S0012-7094-97-08715-9. https://projecteuclid.org/euclid.dmj/1077242324
References
- [BLM] A. Beĭ linson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of $\rm GL\sb n$, Duke Math. J. 61 (1990), no. 2, 655–677.Mathematical Reviews (MathSciNet): MR91m:17012
Zentralblatt MATH: 0713.17012
Digital Object Identifier: doi:10.1215/S0012-7094-90-06124-1
Project Euclid: euclid.dmj/1077296831 - [CF] L. Crane and I. B. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994), no. 10, 5136–5154.Mathematical Reviews (MathSciNet): MR96d:57019
Zentralblatt MATH: 0892.57014
Digital Object Identifier: doi:10.1063/1.530746 - [D] V. Drinfel'd, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.
- [GK] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272.Mathematical Reviews (MathSciNet): MR96a:18004
Zentralblatt MATH: 0855.18006
Digital Object Identifier: doi:10.1215/S0012-7094-94-07608-4
Project Euclid: euclid.dmj/1077286744 - [J] M. Jimbo, A $q$-analogue of $U(\germ g\germ l(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252.Mathematical Reviews (MathSciNet): MR87k:17011
Zentralblatt MATH: 0602.17005
Digital Object Identifier: doi:10.1007/BF00400222 - [Ks] M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.Mathematical Reviews (MathSciNet): MR93b:17045
Zentralblatt MATH: 0739.17005
Digital Object Identifier: doi:10.1215/S0012-7094-91-06321-0
Project Euclid: euclid.dmj/1077295931 - [KL] L. H. Kauffman and S. L. Lins, Temperley-Lieb recoupling theory and invariants of $3$-manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ, 1994.
- [KR] A. N. Kirillov and N. Y. Reshetikhin, Representations of the algebra $U\sb q(\rm sl(2)),\;q$-orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., vol. 7, World Sci. Publishing, Teaneck, NJ, 1989, pp. 285–339.
- [KuR] P. P. Kulish and N. Y. Reshetikhin, Quantum linear problem for the sine-Gordon equation and higher representations, J. Soviet Math. 23 (1983), 2435–2441.
- [K] G. Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109–151.Mathematical Reviews (MathSciNet): MR97f:17005
Zentralblatt MATH: 0870.17005
Digital Object Identifier: doi:10.1007/BF02101184
Project Euclid: euclid.cmp/1104287237 - [L1] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.Mathematical Reviews (MathSciNet): MR90m:17023
Zentralblatt MATH: 0703.17008
Digital Object Identifier: doi:10.2307/1990961
JSTOR: links.jstor.org - [L2] G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 17, 8177–8179.Mathematical Reviews (MathSciNet): MR93j:17033
Zentralblatt MATH: 0760.17011
Digital Object Identifier: doi:10.1073/pnas.89.17.8177
JSTOR: links.jstor.org - [L3] G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993.
- [MV] G. Masbaum and P. Vogel, $3$-valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994), no. 2, 361–381.Mathematical Reviews (MathSciNet): MR95e:57003
Zentralblatt MATH: 0838.57007
Project Euclid: euclid.pjm/1102622100 - [M] J. P. Moussouris, Vector coupling coefficients and spin networks, Advances in Twister Theory, Res. Notes Math., vol. 37, Pitman, Boston, 1979, pp. 313–317.
- [P1] R. Penrose, Angular momentum: An approach to combinatorial space-time, Quantum Theory and Beyond ed. T. A. Bastin, Cambridge Univ. Press, Cambridge, 1969.
- [P2] R. Penrose, Applications of negative dimensional tensors, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 221–244.
- [Pi] S. Piunikhin, Turaev-Viro and Kauffman-Lins invariants for $3$-manifolds coincide, J. Knot Theory Ramifications 1 (1992), no. 2, 105–135.Mathematical Reviews (MathSciNet): MR94g:57010
Zentralblatt MATH: 0759.57011
Digital Object Identifier: doi:10.1142/S0218216592000070 - [RTW] G. Rumer, E. Teller, and H. Weyl, Eine für die Valenztheorie Geeignete Basis der Binaren Vektorinvarianten, Nachr. Ges. Wiss. Göttingen Math.-Phys. K1. (1932), 499–504.Zentralblatt MATH: 0006.14901
- [T] V. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994.
- [CFS] J. S. Carter, D. E. Flath, and M. Saito, The classical and quantum 6$j$-symbols, Mathematical Notes, vol. 43, Princeton University Press, Princeton, NJ, 1995.
- [CC] L. G. Casian and D. H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581–600.Mathematical Reviews (MathSciNet): MR88i:17008
Zentralblatt MATH: 0624.22010
Digital Object Identifier: doi:10.1007/BF01166705 - [De] V. V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506.Mathematical Reviews (MathSciNet): MR89a:20054
Zentralblatt MATH: 0656.22007
Digital Object Identifier: doi:10.1016/0021-8693(87)90232-8 - [FKK] I. Frenkel, M. Khovanov, and A. Kirillov, Jr., Kazhdan-Lusztig polynomials and canonical basis, in preparation.
- [FKV] I. Frenkel, A. Varchenko, and A. Kirillov, Jr., Canonical basis and homology of local systems, preprint, 1997.Mathematical Reviews (MathSciNet): MR1472345
Zentralblatt MATH: 0973.17016
Digital Object Identifier: doi:10.1155/S1073792897000512 - [Kh] M. Khovanov, Canonical bases in tensor products $U_q(\mathfraksl_2)$ modules and Jones-Wenzl projectures, preprint, 1996.
- [LS] A. Lascoux and M.-P. Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 249–266.
- [V] A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, vol. 21, World Scientific Publishing Co. Inc., River Edge, NJ, 1995.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A polytope calculus for semisimple groups
Anderson, Jared E., Duke Mathematical Journal, 2003 - Quiver varieties and cluster algebras
Nakajima, Hiraku, Kyoto Journal of Mathematics, 2011 - Symbol calculus of square-integrable operator-valued maps
Beltiţă, Ingrid, Beltiţă, Daniel, and Măntoiu, Marius, Rocky Mountain Journal of Mathematics, 2016
- A polytope calculus for semisimple groups
Anderson, Jared E., Duke Mathematical Journal, 2003 - Quiver varieties and cluster algebras
Nakajima, Hiraku, Kyoto Journal of Mathematics, 2011 - Symbol calculus of square-integrable operator-valued maps
Beltiţă, Ingrid, Beltiţă, Daniel, and Măntoiu, Marius, Rocky Mountain Journal of Mathematics, 2016 - Calculus and invariants on almost complex manifolds, including projective and conformal geometry
Gover, A. Rod and Nurowski, Paweł, Illinois Journal of Mathematics, 2013 - Tensor products of homotopy Gerstenhaber algebras
Franz, Matthias, Homology, Homotopy and Applications, 2011 - Approximate duals and morphisms of Hilbert C*-modules
Mirzaee Azandaryani, Morteza, Annals of Functional Analysis, 2019 - Tensor product varieties and crystals: The ADE case
Malkin, Anton, Duke Mathematical Journal, 2003 - Clover calculus for homology 3-spheres via basic algebraic topology
Auclair, Emmanuel and Lescop, Christine, Algebraic & Geometric Topology, 2005 - Quantum Teichmüller space from the quantum plane
Frenkel, Igor B. and Kim, Hyun Kyu, Duke Mathematical Journal, 2012 - On the universal $sl_2$ invariant of boundary bottom tangles
Suzuki, Sakie, Algebraic & Geometric Topology, 2012
