Duke Mathematical Journal

Canonical bases in tensor products and graphical calculus for Uq(𝔰𝔩2)

Igor B. Frenkel and Mikhail G. Khovanov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 87, Number 3 (1997), 409-480.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077242324

Digital Object Identifier
doi:10.1215/S0012-7094-97-08715-9

Mathematical Reviews number (MathSciNet)
MR1446615

Zentralblatt MATH identifier
0883.17013

Subjects
Primary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23]
Secondary: 17B10: Representations, algebraic theory (weights)

Citation

Frenkel, Igor B.; Khovanov, Mikhail G. Canonical bases in tensor products and graphical calculus for $U_q(\mathfrak{sl}_2)$. Duke Math. J. 87 (1997), no. 3, 409--480. doi:10.1215/S0012-7094-97-08715-9. https://projecteuclid.org/euclid.dmj/1077242324


Export citation

References

  • [BLM] A. Beĭ linson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of $\rm GL\sb n$, Duke Math. J. 61 (1990), no. 2, 655–677.
  • [CF] L. Crane and I. B. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994), no. 10, 5136–5154.
  • [D] V. Drinfel'd, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.
  • [GK] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203–272.
  • [J] M. Jimbo, A $q$-analogue of $U(\germ g\germ l(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), no. 3, 247–252.
  • [Ks] M. Kashiwara, On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.
  • [KL] L. H. Kauffman and S. L. Lins, Temperley-Lieb recoupling theory and invariants of $3$-manifolds, Annals of Mathematics Studies, vol. 134, Princeton University Press, Princeton, NJ, 1994.
  • [KR] A. N. Kirillov and N. Y. Reshetikhin, Representations of the algebra $U\sb q(\rm sl(2)),\;q$-orthogonal polynomials and invariants of links, Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., vol. 7, World Sci. Publishing, Teaneck, NJ, 1989, pp. 285–339.
  • [KuR] P. P. Kulish and N. Y. Reshetikhin, Quantum linear problem for the sine-Gordon equation and higher representations, J. Soviet Math. 23 (1983), 2435–2441.
  • [K] G. Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109–151.
  • [L1] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.
  • [L2] G. Lusztig, Canonical bases in tensor products, Proc. Nat. Acad. Sci. U.S.A. 89 (1992), no. 17, 8177–8179.
  • [L3] G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993.
  • [MV] G. Masbaum and P. Vogel, $3$-valent graphs and the Kauffman bracket, Pacific J. Math. 164 (1994), no. 2, 361–381.
  • [M] J. P. Moussouris, Vector coupling coefficients and spin networks, Advances in Twister Theory, Res. Notes Math., vol. 37, Pitman, Boston, 1979, pp. 313–317.
  • [P1] R. Penrose, Angular momentum: An approach to combinatorial space-time, Quantum Theory and Beyond ed. T. A. Bastin, Cambridge Univ. Press, Cambridge, 1969.
  • [P2] R. Penrose, Applications of negative dimensional tensors, Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, pp. 221–244.
  • [Pi] S. Piunikhin, Turaev-Viro and Kauffman-Lins invariants for $3$-manifolds coincide, J. Knot Theory Ramifications 1 (1992), no. 2, 105–135.
  • [RTW] G. Rumer, E. Teller, and H. Weyl, Eine für die Valenztheorie Geeignete Basis der Binaren Vektorinvarianten, Nachr. Ges. Wiss. Göttingen Math.-Phys. K1. (1932), 499–504.
  • [T] V. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994.
  • [CFS] J. S. Carter, D. E. Flath, and M. Saito, The classical and quantum 6$j$-symbols, Mathematical Notes, vol. 43, Princeton University Press, Princeton, NJ, 1995.
  • [CC] L. G. Casian and D. H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581–600.
  • [De] V. V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506.
  • [FKK] I. Frenkel, M. Khovanov, and A. Kirillov, Jr., Kazhdan-Lusztig polynomials and canonical basis, in preparation.
  • [FKV] I. Frenkel, A. Varchenko, and A. Kirillov, Jr., Canonical basis and homology of local systems, preprint, 1997.
  • [Kh] M. Khovanov, Canonical bases in tensor products $U_q(\mathfraksl_2)$ modules and Jones-Wenzl projectures, preprint, 1996.
  • [LS] A. Lascoux and M.-P. Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 249–266.
  • [V] A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Advanced Series in Mathematical Physics, vol. 21, World Scientific Publishing Co. Inc., River Edge, NJ, 1995.