Duke Mathematical Journal

Noncommutative deformations of Kleinian singularities

William Crawley-Boevey and Martin P. Holland

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Duke Math. J., Volume 92, Number 3 (1998), 605-635.

Dates
First available in Project Euclid: 19 February 2004

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077231679

Digital Object Identifier
doi:10.1215/S0012-7094-98-09218-3

Mathematical Reviews number (MathSciNet)
MR1620538

Zentralblatt MATH identifier
0974.16007

Subjects
Primary: 14B07: Deformations of singularities [See also 14D15, 32S30]
Secondary: 16G10: Representations of Artinian rings

Citation

Crawley-Boevey, William; Holland, Martin P. Noncommutative deformations of Kleinian singularities. Duke Math. J. 92 (1998), no. 3, 605--635. doi:10.1215/S0012-7094-98-09218-3. https://projecteuclid.org/euclid.dmj/1077231679


Export citation

References

  • [1] D. Baer, W. Geigle, and H. Lenzing, The preprojective algebra of a tame hereditary Artin algebra, Comm. Algebra 15 (1987), no. 1-2, 425–457.
  • [2] V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), no. 1, 75–97.
  • [3] I. N. Bernšteĭ n, I. M. Gelfand, and V. A. Ponomarev, Coxeter functors, and Gabriel's theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19–33.
  • [4] J.-E. Björk, Filtered Noetherian rings, Noetherian rings and their applications (Oberwolfach, 1983) ed. L. W. Small, Math. Surveys Monogr., vol. 24, Amer. Math. Soc., Providence, RI, 1987, pp. 59–97.
  • [5] K. A. Brown and M. Lorenz, Grothendieck groups of invariant rings: linear actions of finite groups, Math. Z. 221 (1996), no. 1, 113–137.
  • [6] S. C. Coutinho and M. P. Holland, $K$-theory of twisted differential operators, J. London Math. Soc. (2) 47 (1993), no. 2, 240–254.
  • [7] J. H. Cozzens, Maximal orders and reflexive modules, Trans. Amer. Math. Soc. 219 (1976), 323–336.
  • [8] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57.
  • [9] V. Dlab and C. M. Ringel, The preprojective algebra of a modulated graph, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) eds. V. Dlab and P. Gabriel, Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 216–231.
  • [10] V. Dlab and C. M. Ringel, Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebras, Proc. Amer. Math. Soc. 83 (1981), no. 2, 228–232.
  • [11] D. Eisenbud, Commutative algebra:With a view towards algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
  • [12] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979) eds. V. Dlab and P. Gabriel, Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71.
  • [13] I. M. Gelfand and V. A. Ponomarev, Model algebras and representations of graphs, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3, 1–12.
  • [14] T. G. Goodwillie, Relative algebraic $K$-theory and cyclic homology, Ann. of Math. (2) 124 (1986), no. 2, 347–402.
  • [15] T. J. Hodges, Noncommutative deformations of type-$A$ Kleinian singularities, J. Algebra 161 (1993), no. 2, 271–290.
  • [16] M. P. Holland, $K$-theory of endomorphism rings and of rings of invariants, J. Algebra 191 (1997), no. 2, 668–685.
  • [17] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.
  • [18] A. Joseph, A generalization of Quillen's lemma and its application to the Weyl algebras, Israel J. Math. 28 (1977), no. 3, 177–192.
  • [19] V. G. Kac, Infinite-dimensional Lie algebras,3rd ed., Cambridge University Press, Cambridge, 1990.
  • [20] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984.
  • [21] G. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985.
  • [22] P. B. Kronheimer, 1987, letter to P. Slodowy.
  • [23] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683.
  • [24] L. Le Bruyn and C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), no. 2, 585–598.
  • [25] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421.
  • [26] R. Martin, Skew group rings and maximal orders, Glasgow Math. J. 37 (1995), no. 2, 249–263.
  • [27] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics, John Wiley & Sons Ltd., Chichester, 1987.
  • [28] J. McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 183–186.
  • [29] S. Montgomery and L. W. Small, Fixed rings of Noetherian rings, Bull. London Math. Soc. 13 (1981), no. 1, 33–38.
  • [30] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.
  • [31] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416.
  • [32] D. Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 85–147. Lecture Notes in Math., Vol. 341.
  • [33] I. Reiten and M. Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 80 (1989), no. 408, viii+72.
  • [34] P. Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980.
  • [35] L. Small and R. B. Warfield, Prime affine algebras of Gelfand-Kirillov dimension one, J. Algebra 91 (1984), no. 2, 386–389.
  • [36] S. P. Smith, A class of algebras similar to the enveloping algebra of $\rm sl(2)$, Trans. Amer. Math. Soc. 322 (1990), no. 1, 285–314.
  • [37] M. Van den Bergh and F. Van Oystaeyen, Lifting maximal orders, Comm. Algebra 17 (1989), no. 2, 341–349.
  • [38] C. A. Weibel, Module structures on the $K$-theory of graded rings, J. Algebra 105 (1987), no. 2, 465–483.
  • [39] Z. Yi, Injective homogeneity and the Auslander-Gorenstein property, Glasgow Math. J. 37 (1995), no. 2, 191–204.