Duke Mathematical Journal
- Duke Math. J.
- Volume 92, Number 3 (1998), 605-635.
Noncommutative deformations of Kleinian singularities
William Crawley-Boevey and Martin P. Holland
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 92, Number 3 (1998), 605-635.
Dates
First available in Project Euclid: 19 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077231679
Digital Object Identifier
doi:10.1215/S0012-7094-98-09218-3
Mathematical Reviews number (MathSciNet)
MR1620538
Zentralblatt MATH identifier
0974.16007
Subjects
Primary: 14B07: Deformations of singularities [See also 14D15, 32S30]
Secondary: 16G10: Representations of Artinian rings
Citation
Crawley-Boevey, William; Holland, Martin P. Noncommutative deformations of Kleinian singularities. Duke Math. J. 92 (1998), no. 3, 605--635. doi:10.1215/S0012-7094-98-09218-3. https://projecteuclid.org/euclid.dmj/1077231679
References
- [1] D. Baer, W. Geigle, and H. Lenzing, The preprojective algebra of a tame hereditary Artin algebra, Comm. Algebra 15 (1987), no. 1-2, 425–457.Mathematical Reviews (MathSciNet): MR88i:16036
Zentralblatt MATH: 0612.16015
Digital Object Identifier: doi:10.1080/00927878708823425 - [2] V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), no. 1, 75–97.
- [3] I. N. Bernšteĭ n, I. M. Gelfand, and V. A. Ponomarev, Coxeter functors, and Gabriel's theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19–33.
- [4] J.-E. Björk, Filtered Noetherian rings, Noetherian rings and their applications (Oberwolfach, 1983) ed. L. W. Small, Math. Surveys Monogr., vol. 24, Amer. Math. Soc., Providence, RI, 1987, pp. 59–97.
- [5] K. A. Brown and M. Lorenz, Grothendieck groups of invariant rings: linear actions of finite groups, Math. Z. 221 (1996), no. 1, 113–137.Mathematical Reviews (MathSciNet): MR96m:19005
Zentralblatt MATH: 0905.19001
Digital Object Identifier: doi:10.1007/BF02622103 - [6] S. C. Coutinho and M. P. Holland, $K$-theory of twisted differential operators, J. London Math. Soc. (2) 47 (1993), no. 2, 240–254.Mathematical Reviews (MathSciNet): MR94e:16032
Zentralblatt MATH: 0811.16020
Digital Object Identifier: doi:10.1112/jlms/s2-47.2.240 - [7] J. H. Cozzens, Maximal orders and reflexive modules, Trans. Amer. Math. Soc. 219 (1976), 323–336.Mathematical Reviews (MathSciNet): MR54:7524
Zentralblatt MATH: 0334.16009
Digital Object Identifier: doi:10.2307/1997597 - [8] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+57.
- [9] V. Dlab and C. M. Ringel, The preprojective algebra of a modulated graph, Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979) eds. V. Dlab and P. Gabriel, Lecture Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 216–231.
- [10] V. Dlab and C. M. Ringel, Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebras, Proc. Amer. Math. Soc. 83 (1981), no. 2, 228–232.Mathematical Reviews (MathSciNet): MR83c:15007
Zentralblatt MATH: 0471.15005
Digital Object Identifier: doi:10.2307/2043500
JSTOR: links.jstor.org - [11] D. Eisenbud, Commutative algebra:With a view towards algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.
- [12] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979) eds. V. Dlab and P. Gabriel, Lecture Notes in Math., vol. 831, Springer, Berlin, 1980, pp. 1–71.
- [13] I. M. Gelfand and V. A. Ponomarev, Model algebras and representations of graphs, Funktsional. Anal. i Prilozhen. 13 (1979), no. 3, 1–12.
- [14] T. G. Goodwillie, Relative algebraic $K$-theory and cyclic homology, Ann. of Math. (2) 124 (1986), no. 2, 347–402.Mathematical Reviews (MathSciNet): MR88b:18008
Zentralblatt MATH: 0627.18004
Digital Object Identifier: doi:10.2307/1971283 - [15] T. J. Hodges, Noncommutative deformations of type-$A$ Kleinian singularities, J. Algebra 161 (1993), no. 2, 271–290.Mathematical Reviews (MathSciNet): MR94i:14038
Zentralblatt MATH: 0807.16029
Digital Object Identifier: doi:10.1006/jabr.1993.1219 - [16] M. P. Holland, $K$-theory of endomorphism rings and of rings of invariants, J. Algebra 191 (1997), no. 2, 668–685.Mathematical Reviews (MathSciNet): MR98c:16006
Zentralblatt MATH: 0878.16007
Digital Object Identifier: doi:10.1006/jabr.1996.6931 - [17] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.
- [18] A. Joseph, A generalization of Quillen's lemma and its application to the Weyl algebras, Israel J. Math. 28 (1977), no. 3, 177–192.Mathematical Reviews (MathSciNet): MR58:28097
Zentralblatt MATH: 0366.17006
Digital Object Identifier: doi:10.1007/BF02759808 - [19] V. G. Kac, Infinite-dimensional Lie algebras,3rd ed., Cambridge University Press, Cambridge, 1990.
- [20] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984.
- [21] G. Krause and T. H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Mathematics, vol. 116, Pitman (Advanced Publishing Program), Boston, MA, 1985.
- [22] P. B. Kronheimer, 1987, letter to P. Slodowy.
- [23] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683.Mathematical Reviews (MathSciNet): MR90d:53055
Zentralblatt MATH: 0671.53045
Project Euclid: euclid.jdg/1214443066 - [24] L. Le Bruyn and C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), no. 2, 585–598.Mathematical Reviews (MathSciNet): MR90e:16048
Zentralblatt MATH: 0693.16018
Digital Object Identifier: doi:10.2307/2001477
JSTOR: links.jstor.org - [25] G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421.Mathematical Reviews (MathSciNet): MR91m:17018
Zentralblatt MATH: 0738.17011
Digital Object Identifier: doi:10.2307/2939279
JSTOR: links.jstor.org - [26] R. Martin, Skew group rings and maximal orders, Glasgow Math. J. 37 (1995), no. 2, 249–263.Mathematical Reviews (MathSciNet): MR96g:16036
Zentralblatt MATH: 0830.16018
Digital Object Identifier: doi:10.1017/S0017089500031153 - [27] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics, John Wiley & Sons Ltd., Chichester, 1987.
- [28] J. McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 183–186.
- [29] S. Montgomery and L. W. Small, Fixed rings of Noetherian rings, Bull. London Math. Soc. 13 (1981), no. 1, 33–38.Mathematical Reviews (MathSciNet): MR82a:16033
Zentralblatt MATH: 0453.16021
Digital Object Identifier: doi:10.1112/blms/13.1.33 - [30] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994.
- [31] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416.Mathematical Reviews (MathSciNet): MR95i:53051
Zentralblatt MATH: 0826.17026
Digital Object Identifier: doi:10.1215/S0012-7094-94-07613-8
Project Euclid: euclid.dmj/1077286968 - [32] D. Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, 85–147. Lecture Notes in Math., Vol. 341.
- [33] I. Reiten and M. Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 80 (1989), no. 408, viii+72.
- [34] P. Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980.
- [35] L. Small and R. B. Warfield, Prime affine algebras of Gelfand-Kirillov dimension one, J. Algebra 91 (1984), no. 2, 386–389.Mathematical Reviews (MathSciNet): MR86h:16006
Zentralblatt MATH: 0545.16011
Digital Object Identifier: doi:10.1016/0021-8693(84)90110-8 - [36] S. P. Smith, A class of algebras similar to the enveloping algebra of $\rm sl(2)$, Trans. Amer. Math. Soc. 322 (1990), no. 1, 285–314.Mathematical Reviews (MathSciNet): MR91b:17013
Zentralblatt MATH: 0732.16019
Digital Object Identifier: doi:10.2307/2001532 - [37] M. Van den Bergh and F. Van Oystaeyen, Lifting maximal orders, Comm. Algebra 17 (1989), no. 2, 341–349.Mathematical Reviews (MathSciNet): MR90a:16006
Zentralblatt MATH: 0663.16004
Digital Object Identifier: doi:10.1080/00927878908823732 - [38] C. A. Weibel, Module structures on the $K$-theory of graded rings, J. Algebra 105 (1987), no. 2, 465–483.Mathematical Reviews (MathSciNet): MR88f:18018
Zentralblatt MATH: 0611.13012
Digital Object Identifier: doi:10.1016/0021-8693(87)90210-9 - [39] Z. Yi, Injective homogeneity and the Auslander-Gorenstein property, Glasgow Math. J. 37 (1995), no. 2, 191–204.Mathematical Reviews (MathSciNet): MR1333738
Zentralblatt MATH: 0830.16010
Digital Object Identifier: doi:10.1017/S0017089500031098

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Deformation spaces of Kleinian surface groups are not locally connected
Magid, Aaron D, Geometry & Topology, 2012 - Deformations and D-branes
Bergman, Aaron, Advances in Theoretical and Mathematical Physics, 2008 - Two-generator free Kleinian groups and hyperbolic displacements
Yüce, İlker S, Algebraic & Geometric Topology, 2014
- Deformation spaces of Kleinian surface groups are not locally connected
Magid, Aaron D, Geometry & Topology, 2012 - Deformations and D-branes
Bergman, Aaron, Advances in Theoretical and Mathematical Physics, 2008 - Two-generator free Kleinian groups and hyperbolic displacements
Yüce, İlker S, Algebraic & Geometric Topology, 2014 - Noncommutative deformations and flops
Donovan, Will and Wemyss, Michael, Duke Mathematical Journal, 2016 - The divisor of Selberg's zeta function for Kleinian groups
Patterson, S. J. and Perry, Peter A., Duke Mathematical Journal, 2001 - Approximation by Maximal Cusps in Boundaries of Deformation Spaces of Kleinian Groups
Canary, Richard D., Culler, Marc, Hersonsky, SA'AR, and Shalen, Peter B., Journal of Differential Geometry, 2003 - On moduli spaces of 3d Lie algebras
SIQVELAND, Arvid, Journal of Generalized Lie Theory and Applications, 2009 - CR Deformation of Cyclic Quotient Surface Singularities
Miyamima, Kimio, , 2010 - $DG$-models of projective modules and Nakajima quiver
varieties
Eshmatov, Farkhod, Homology, Homotopy and Applications, 2007 - On pseudodifferential operators with symbols in generalized Shubin classes and an
application to Landau-Weyl operators
Luef, Franz and Rahbani, Zohreh, Banach Journal of Mathematical Analysis, 2011
