Duke Mathematical Journal
- Duke Math. J.
- Volume 93, Number 1 (1998), 1-39.
Affine Hecke algebras and raising operators for Macdonald polynomials
Anatol N. Kirillov and Masatoshi Noumi
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 93, Number 1 (1998), 1-39.
Dates
First available in Project Euclid: 19 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077230635
Digital Object Identifier
doi:10.1215/S0012-7094-98-09301-2
Mathematical Reviews number (MathSciNet)
MR1627327
Zentralblatt MATH identifier
0939.05090
Subjects
Primary: 05E05: Symmetric functions and generalizations
Secondary: 33C80: Connections with groups and algebras, and related topics 33D80: Connections with quantum groups, Chevalley groups, $p$-adic groups, Hecke algebras, and related topics
Citation
Kirillov, Anatol N.; Noumi, Masatoshi. Affine Hecke algebras and raising operators for Macdonald polynomials. Duke Math. J. 93 (1998), no. 1, 1--39. doi:10.1215/S0012-7094-98-09301-2. https://projecteuclid.org/euclid.dmj/1077230635
References
- [C] I. Cherednik, Double affine Hecke algebras and Macdonald's conjectures, Ann. of Math. (2) 141 (1995), no. 1, 191–216.Mathematical Reviews (MathSciNet): MR96m:33010
Zentralblatt MATH: 0822.33008
Digital Object Identifier: doi:10.2307/2118632
JSTOR: links.jstor.org - [D] E. Date, et al., Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities, Conformal field theory and solvable lattice models (Kyoto, 1986), Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 17–122.
- [GH] A. M. Garsia and M. Haiman, A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, 3607–3610.Mathematical Reviews (MathSciNet): MR94b:05206
Zentralblatt MATH: 0831.05062
Digital Object Identifier: doi:10.1073/pnas.90.8.3607
JSTOR: links.jstor.org - [GT] A. M. Garsia and G. Tesler, Plethystic formulas for Macdonald $q,t$-Kostka coefficients, Adv. Math. 123 (1996), no. 2, 144–222.Mathematical Reviews (MathSciNet): MR99j:05189e
Zentralblatt MATH: 0865.05075
Digital Object Identifier: doi:10.1006/aima.1996.0071 - [K] A. N. Kirillov, Dilogarithm identities, Progr. Theoret. Phys. Suppl. (1995), no. 118, 61–142, Quantum field theory, integrable models and beyond.Mathematical Reviews (MathSciNet): MR96h:11102
Zentralblatt MATH: 0894.11052
Digital Object Identifier: doi:10.1143/PTPS.118.61 - [KJr] A. A. Kirillov, Jr., Lectures on affine Hecke algebras and Macdonald's conjectures, Bull. Amer. Math. Soc. 34 (1997), no. 3, 251–292.Mathematical Reviews (MathSciNet): MR99c:17015
Zentralblatt MATH: 0884.05100
Digital Object Identifier: doi:10.1090/S0273-0979-97-00727-1 - [KN] A. N. Kirillov and M. Noumi, $q$-Difference raising operators for Macdonald polynomials and the integrality of transition coefficients, preprint, UTMS-96-25, 1996.
- [Kn] F. Knop, Integrality of two variable Kostka functions, J. Reine Angew Math. 482 (1997), 177–189.Mathematical Reviews (MathSciNet): MR99j:05189c
Zentralblatt MATH: 0876.05098
Digital Object Identifier: doi:10.1515/crll.1997.482.177 - [LV1] L. Lapointe and L. Vinet, A Rodrigues formula for the Jack polynomials and the Macdonald-Stanley conjecture, Internat. Math. Res. Notices (1995), no. 9, 419–424.Mathematical Reviews (MathSciNet): MR96i:33018
Zentralblatt MATH: 0868.33009
Digital Object Identifier: doi:10.1155/S1073792895000298 - [LV2] L. Lapointe and L. Vinet, Exact operator solution of the Calogero-Sutherland model, Comm. Math. Phys. 178 (1996), no. 2, 425–452.Mathematical Reviews (MathSciNet): MR97c:81217
Zentralblatt MATH: 0859.35103
Digital Object Identifier: doi:10.1007/BF02099456
Project Euclid: euclid.cmp/1104286659 - [Ma1] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995.
- [Ma2] I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials, Astérisque 237 (1996), no. 797, 189–207, Séminaire Bourbaki, 1994–95, Publ. I.R.M.A., Strasbourg.
- [Mi] K. Mimachi, A solution to quantum Knizhnik-Zamolodchikov equations and its application to eigenvalue problems of the Macdonald type, Duke Math. J. 85 (1996), no. 3, 635–658.Mathematical Reviews (MathSciNet): MR98f:17019
Zentralblatt MATH: 0889.17009
Digital Object Identifier: doi:10.1215/S0012-7094-96-08524-5
Project Euclid: euclid.dmj/1077243445 - [MN1] K. Mimachi and M. Noumi, An integral representation of eigenfunctions for Macdonald's $q$-difference operators, Tôhoku Math. J. (2) 49 (1997), no. 4, 517–525.Mathematical Reviews (MathSciNet): MR99e:39077
Zentralblatt MATH: 0908.33011
Digital Object Identifier: doi:10.2748/tmj/1178225058
Project Euclid: euclid.tmj/1178225058 - [MN2] K. Mimachi and M. Noumi, Representations of the Hecke algebra on a family of rational functions, preprint, 1996.
- [S] B. E. Sagan, The Symmetric Group: Representations, Combinatorical Algorithms, and Symmetric Functions, The Wadsworth and Brooks/Cole Math. Ser., Wadsworth & Brooks, Pacific Grove, Calif., 1991.
- [Sa] S. Sahi, Interpolation, integrality, and a generalization of Macdonald's polynomials, Internat. Math. Res. Notices (1996), no. 10, 457–471.Mathematical Reviews (MathSciNet): MR99j:05189b
Zentralblatt MATH: 0861.05063
Digital Object Identifier: doi:10.1155/S107379289600030X

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The quantum Knizhnik–Zamolodchikov equation and non-symmetric Macdonald polynomials
Kasatani, Masahiro and Takeyama, Yoshihiro, , 2009 - Quantum continuous gl∞: Semiinfinite construction of representations
Feigin, B., Feigin, E., Jimbo, M., Miwa, T., and Mukhin, E., Kyoto Journal of Mathematics, 2011 - Some quotient algebras arising from the quantum toroidal algebra $U_{q}(sl_2(\mathcal{C}_{\gamma}))$
Miki, Kei, Osaka Journal of Mathematics, 2005
- The quantum Knizhnik–Zamolodchikov equation and non-symmetric Macdonald polynomials
Kasatani, Masahiro and Takeyama, Yoshihiro, , 2009 - Quantum continuous gl∞: Semiinfinite construction of representations
Feigin, B., Feigin, E., Jimbo, M., Miwa, T., and Mukhin, E., Kyoto Journal of Mathematics, 2011 - Some quotient algebras arising from the quantum toroidal algebra $U_{q}(sl_2(\mathcal{C}_{\gamma}))$
Miki, Kei, Osaka Journal of Mathematics, 2005 - Some quotient algebras arising
from the quantum toroidal algebra
$U_{q}(\mathit{sl}_{n+1}(\mathcal{C}_{\gamma}))$ ($n\geq 2$)
Miki, Kei, Osaka Journal of Mathematics, 2006 - The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra
Morton, Hugh and Samuelson, Peter, Duke Mathematical Journal, 2017 - Nonsymmetric Macdonald polynomials and Demazure characters
Ion, Bogdan, Duke Mathematical Journal, 2003 - On the center of quiver Hecke algebras
Shan, P., Varagnolo, M., and Vasserot, E., Duke Mathematical Journal, 2017 - Equivariant K-theory of Hilbert schemes via shuffle algebra
Feigin, B. L. and Tsymbaliuk, A. I., Kyoto Journal of Mathematics, 2011 - Elliptic Hecke algebras and modified Cherednik algebras
Takebayashi, Tadayoshi, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2003 - Crystals and affine Hecke algebras of type D
Kashiwara, Masaki and Miemietz, Vanessa, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2007
