Duke Mathematical Journal
- Duke Math. J.
- Volume 96, Number 1 (1999), 29-59.
Bloch invariants of hyperbolic -manifolds
Walter D. Neumann and Jun Yang
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 96, Number 1 (1999), 29-59.
Dates
First available in Project Euclid: 19 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077228942
Digital Object Identifier
doi:10.1215/S0012-7094-99-09602-3
Mathematical Reviews number (MathSciNet)
MR1663915
Zentralblatt MATH identifier
0943.57008
Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 19E99: None of the above, but in this section 19F27: Étale cohomology, higher regulators, zeta and L-functions [See also 11G40, 11R42, 11S40, 14F20, 14G10] 57M50: Geometric structures on low-dimensional manifolds 57N10: Topology of general 3-manifolds [See also 57Mxx] 58J28: Eta-invariants, Chern-Simons invariants
Citation
Neumann, Walter D.; Yang, Jun. Bloch invariants of hyperbolic $3$ -manifolds. Duke Math. J. 96 (1999), no. 1, 29--59. doi:10.1215/S0012-7094-99-09602-3. https://projecteuclid.org/euclid.dmj/1077228942
References
- [1] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69.Mathematical Reviews (MathSciNet): MR53:1655a
Zentralblatt MATH: 0297.58008
Digital Object Identifier: doi:10.1017/S0305004100049410 - [2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 405–432.Mathematical Reviews (MathSciNet): MR53:1655b
Zentralblatt MATH: 0314.58016
Digital Object Identifier: doi:10.1017/S0305004100051872 - [3] C. Batut, et al., Pari-GP, available from ftp://megrez.ceremab.u-bordeaux.fr/pub/pari/.
- [4] A. Beilinson, Higher regulators and values of $L$-functions, J. Soviet Math. 30 (1985), 2036–2070, (English translation).Mathematical Reviews (MathSciNet): MR760999
- [5] S. Bloch, Higher regulators, algebraic $K$-theory, and zeta functions of elliptic curves, lecture notes, Univ. of California, Irvine, 1978.
- [6] Armand Borel, Cohomologie de $\rm SL\sbn$ et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613–636.
- [7] Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1982.
- [8] Shiing-shen Chern and James Simons, Some cohomology classes in principal fiber bundles and their application to riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791–794.Mathematical Reviews (MathSciNet): MR43:5453
Zentralblatt MATH: 0209.25401
Digital Object Identifier: doi:10.1073/pnas.68.4.791
JSTOR: links.jstor.org - [9] Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993.
- [10] Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Studies in Advanced Mathematics, vol. 17, Cambridge University Press, Cambridge, 1989.
- [11] Johan L. Dupont, Algebra of polytopes and homology of flag complexes, Osaka J. Math. 19 (1982), no. 3, 599–641.Mathematical Reviews (MathSciNet): MR85f:52014
Zentralblatt MATH: 0499.51014
Project Euclid: euclid.ojm/1200775324 - [12] Johan L. Dupont, The dilogarithm as a characteristic class for flat bundles, J. Pure Appl. Algebra 44 (1987), no. 1-3, 137–164, in Proceedings of the Northwestern Conference on Cohomology of Groups (Evanston, Ill., 1985), North-Holland, Amsterdam.Mathematical Reviews (MathSciNet): MR88k:57032
Zentralblatt MATH: 0624.57024
Digital Object Identifier: doi:10.1016/0022-4049(87)90021-1 - [13] J. L. Dupont and F. W. Kamber, Cheeger-Chern-Simons classes of transversally symmetric foliations: dependence relations and eta-invariants, Math. Ann. 295 (1993), no. 3, 449–468.Mathematical Reviews (MathSciNet): MR95i:57026
Zentralblatt MATH: 0793.57015
Digital Object Identifier: doi:10.1007/BF01444896 - [14] Johan L. Dupont and Chih Han Sah, Scissors congruences. II, J. Pure Appl. Algebra 25 (1982), no. 2, 159–195.Mathematical Reviews (MathSciNet): MR84b:53062b
Zentralblatt MATH: 0496.52004
Digital Object Identifier: doi:10.1016/0022-4049(82)90035-4 - [15] D. B. A. Epstein and R. C. Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988), no. 1, 67–80.Mathematical Reviews (MathSciNet): MR89a:57020
Zentralblatt MATH: 0611.53036
Project Euclid: euclid.jdg/1214441650 - [16] Henri Gillet, Riemann-Roch theorems for higher algebraic $K$-theory, Adv. in Math. 40 (1981), no. 3, 203–289.Mathematical Reviews (MathSciNet): MR83m:14013
Zentralblatt MATH: 0478.14010
Digital Object Identifier: doi:10.1016/S0001-8708(81)80006-0 - [17] A. B. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, Max-Planck-Institut für Mathematik. Bonn, preprint MPI 1996-10, 1996.
- [18] O. Goodman, Snap, available from http://www.ms.unimelb.edu.au/~snap.
- [19] Benedict H. Gross, On the values of Artin $L$-functions, preprint, Brown University, Providence, 1980.Mathematical Reviews (MathSciNet): MR2154331
- [20] Richard M. Hain, Classical polylogarithms, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 3–42.
- [21] Richard M. Hain and Robert MacPherson, Higher logarithms, Illinois J. Math. 34 (1990), no. 2, 392–475.Mathematical Reviews (MathSciNet): MR92c:14016
Zentralblatt MATH: 0737.14014
Project Euclid: euclid.ijm/1255988272 - [22] A. M. Macbeath, Commensurability of co-compact three-dimensional hyperbolic groups, Duke Math. J. 50 (1983), no. 4, 1245–1253.Mathematical Reviews (MathSciNet): MR85f:22013
Zentralblatt MATH: 0588.22009
Digital Object Identifier: doi:10.1215/S0012-7094-83-05054-8
Project Euclid: euclid.dmj/1077303499 - [23] Robert Meyerhoff, Hyperbolic $3$-manifolds with equal volumes but different Chern-Simons invariants, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) ed. D. B. A. Epstein, London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 209–215.
- [24] Robert Meyerhoff and Walter D. Neumann, An asymptotic formula for the eta invariants of hyperbolic $3$-manifolds, Comment. Math. Helv. 67 (1992), no. 1, 28–46.Mathematical Reviews (MathSciNet): MR92k:57049
Zentralblatt MATH: 0791.57009
Digital Object Identifier: doi:10.1007/BF02566487 - [25] John Milnor, Hyperbolic geometry: the first 150 years, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 9–24.Mathematical Reviews (MathSciNet): MR82m:57005
Zentralblatt MATH: 0486.01006
Digital Object Identifier: doi:10.1090/S0273-0979-1982-14958-8
Project Euclid: euclid.bams/1183548588 - [26] John Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. (2) 29 (1983), no. 3-4, 281–322.
- [27] Walter D. Neumann, Combinatorics of triangulations and the Chern-Simons invariant for hyperbolic $3$-manifolds, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 243–271.
- [28] Walter D. Neumann and Alan W. Reid, Amalgamation and the invariant trace field of a Kleinian group, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 509–515.Mathematical Reviews (MathSciNet): MR92b:30053
Zentralblatt MATH: 0728.57009
Digital Object Identifier: doi:10.1017/S0305004100069942 - [29] Walter D. Neumann and Alan W. Reid, Arithmetic of hyperbolic manifolds, Topology '90 (Columbus, OH, 1990), Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 273–310.
- [30] Walter D. Neumann and Jun Yang, Invariants from triangulations of hyperbolic $3$-manifolds, Electron. Res. Announc. Amer. Math. Soc. 1 (1995), no. 2, 72–79 (electronic).Mathematical Reviews (MathSciNet): MR97d:57017
Zentralblatt MATH: 0851.57013
Digital Object Identifier: doi:10.1090/S1079-6762-95-02003-8 - [31] Walter D. Neumann and Jun Yang, Rationality problems for $K$-theory and Chern-Simons invariants of hyperbolic $3$-manifolds, Enseign. Math. (2) 41 (1995), no. 3-4, 281–296.
- [32] Walter D. Neumann and Don Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), no. 3, 307–332.Mathematical Reviews (MathSciNet): MR87j:57008
Zentralblatt MATH: 0589.57015
Digital Object Identifier: doi:10.1016/0040-9383(85)90004-7 - [33] Mingqing Ouyang, A simplicial formula for the $\eta$-invariant of hyperbolic $3$-manifolds, Topology 36 (1997), no. 2, 411–421.Mathematical Reviews (MathSciNet): MR97i:57013
Zentralblatt MATH: 0871.57012
Digital Object Identifier: doi:10.1016/0040-9383(96)00013-4 - [34] Dinakar Ramakrishnan, Regulators, algebraic cycles, and values of $L$-functions, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 183–310.
- [35] M. Rapoport, Comparison of the regulators of Beĭlinson and of Borel, Beĭlinson's conjectures on special values of $L$-functions ed. M. Rapoport, et al., Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 169–192.
- [36] Alan W. Reid, A note on trace-fields of Kleinian groups, Bull. London Math. Soc. 22 (1990), no. 4, 349–352.Mathematical Reviews (MathSciNet): MR91d:20056
Zentralblatt MATH: 0706.20038
Digital Object Identifier: doi:10.1112/blms/22.4.349 - [37] Chih Han Sah, Scissors congruences. I. The Gauss-Bonnet map, Math. Scand. 49 (1981), no. 2, 181–210 (1982).
- [38] A. A. Suslin, Algebraic $K$-theory of fields, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), vol. I, Amer. Math. Soc., Providence, 1987, pp. 222–244.
- [39] A. A. Suslin, $K\sb 3$ of a field, and the Bloch group, Trudy Mat. Inst. Steklov. 183 (1990), 180–199, 229, (in Russian), English translation in Proc. Steklov Inst. Math. 183, no. 4 (1991), 217–239.
- [40] W. P. Thurston, The geometry and topology of $3$-manifolds, lecture notes, Princeton University, Princeton, 1977.
- [41] William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381.Mathematical Reviews (MathSciNet): MR83h:57019
Zentralblatt MATH: 0496.57005
Digital Object Identifier: doi:10.1090/S0273-0979-1982-15003-0
Project Euclid: euclid.bams/1183548782 - [42] William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246.Mathematical Reviews (MathSciNet): MR88g:57014
Zentralblatt MATH: 0668.57015
Digital Object Identifier: doi:10.2307/1971277
JSTOR: links.jstor.org - [43] J. Weeks, Snappea, available from ftp://geom.umn.edu/pub/software/snappea/.
- [44] Tomoyoshi Yoshida, The $\eta$-invariant of hyperbolic $3$-manifolds, Invent. Math. 81 (1985), no. 3, 473–514.Mathematical Reviews (MathSciNet): MR87f:58153
Zentralblatt MATH: 0594.58012
Digital Object Identifier: doi:10.1007/BF01388583 - [45] Don Zagier, The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Ann. 286 (1990), no. 1-3, 613–624.Mathematical Reviews (MathSciNet): MR90k:11153
Zentralblatt MATH: 0698.33001
Digital Object Identifier: doi:10.1007/BF01453591

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- The complex volume of SL(n,C)-representations of 3-manifolds
Garoufalidis, Stavros, Thurston, Dylan P., and Zickert, Christian K., Duke Mathematical Journal, 2015 - Computing arithmetic invariants of 3-manifolds
Coulson, David, Goodman, Oliver A., Hodgson, Craig D., and Neumann, Walter D., Experimental Mathematics, 2000 - The Bloch invariant as a characteristic class in $B(SL_2(\mathbb {C}), \mathfrak{ T})$.
Cisneros-Molina, José Luis and Jones, John D. S., Homology, Homotopy and Applications, 2003
- The complex volume of SL(n,C)-representations of 3-manifolds
Garoufalidis, Stavros, Thurston, Dylan P., and Zickert, Christian K., Duke Mathematical Journal, 2015 - Computing arithmetic invariants of 3-manifolds
Coulson, David, Goodman, Oliver A., Hodgson, Craig D., and Neumann, Walter D., Experimental Mathematics, 2000 - The Bloch invariant as a characteristic class in $B(SL_2(\mathbb {C}), \mathfrak{ T})$.
Cisneros-Molina, José Luis and Jones, John D. S., Homology, Homotopy and Applications, 2003 - Tunnel complexes of $3$–manifolds
Koda, Yuya, Algebraic & Geometric Topology, 2011 - The link volume of $3$–manifolds
Rieck, Yo’av and Yamashita, Yasushi, Algebraic & Geometric Topology, 2013 - Extended Bloch group and the Cheeger–Chern–Simons class
Neumann, Walter D, Geometry & Topology, 2004 - 3-Manifolds and 3d indices
Dimofte, Tudor, Gaiotto, Davide, and Gukov, Sergei, Advances in Theoretical and Mathematical Physics, 2013 - Complexity of PL manifolds
Martelli, Bruno, Algebraic & Geometric Topology, 2010 - Exceptional Regions and Associated Exceptional Hyperbolic 3-Manifolds, with an appendix by Alan W. Reid
Champanerkar, Abhijit, Lewis, Jacob, Lipyanskiy, Max, and Meltzer, Scott, Experimental Mathematics, 2007 - A Burns-Epstein invariant for ACHE 4-manifolds
Biquard, Olivier and Herzlich, Marc, Duke Mathematical Journal, 2005
