Duke Mathematical Journal
- Duke Math. J.
- Volume 97, Number 1 (1999), 109-126.
Characteristic cycles for the loop Grassmannian and nilpotent orbits
Full-text: Access denied (no subscription detected)
We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text
Article information
Source
Duke Math. J., Volume 97, Number 1 (1999), 109-126.
Dates
First available in Project Euclid: 19 February 2004
Permanent link to this document
https://projecteuclid.org/euclid.dmj/1077228504
Digital Object Identifier
doi:10.1215/S0012-7094-99-09705-3
Mathematical Reviews number (MathSciNet)
MR1682280
Zentralblatt MATH identifier
1160.22306
Subjects
Primary: 22E67: Loop groups and related constructions, group-theoretic treatment [See also 58D05]
Secondary: 20G05: Representation theory 32C38: Sheaves of differential operators and their modules, D-modules [See also 14F10, 16S32, 35A27, 58J15]
Citation
Evens, Sam; Mirković, Ivan. Characteristic cycles for the loop Grassmannian and nilpotent orbits. Duke Math. J. 97 (1999), no. 1, 109--126. doi:10.1215/S0012-7094-99-09705-3. https://projecteuclid.org/euclid.dmj/1077228504
References
- [ABV] Jeffrey Adams, Dan Barbasch, and David A. Vogan, Jr., The Langlands classification and irreducible characters for real reductive groups, Progress in Mathematics, vol. 104, Birkhäuser Boston Inc., Boston, MA, 1992.
- [BK] J. Bernstein and D. Kazhdan, An example of a non-rational variety $\hat{\mathcal{B}}_{N}$ for $G={\mathrm{Sp}}(6)$, appendix to D. Kazhdan and G. lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math 62 (1988), 129–168.
- [BoF] Brian D. Boe and Joseph H. G. Fu, Characteristic cycles in Hermitian symmetric spaces, Canad. J. Math. 49 (1997), no. 3, 417–467.Mathematical Reviews (MathSciNet): MR98j:14068
Zentralblatt MATH: 0915.14030
Digital Object Identifier: doi:10.4153/CJM-1997-021-7 - [BorM] Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23–74.
- [Br] T. Braden, Characteristic cycles of toric varieties; perverse sheaves on rank stratifications, Ph.D. thesis, Massachusetts Institute of Technology, 1995.Mathematical Reviews (MathSciNet): MR2716580
- [BreFL] P. Bressler, M. Finkelberg, and V. Lunts, Vanishing cycles on Grassmannians, Duke Math. J. 61 (1990), no. 3, 763–777.Mathematical Reviews (MathSciNet): MR92f:14051
Zentralblatt MATH: 0727.14027
Digital Object Identifier: doi:10.1215/S0012-7094-90-06128-9
Project Euclid: euclid.dmj/1077296992 - [Ca] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons Ltd., Chichester, 1993, Conjugacy Classes and Complex Character.
- [Du] Alberto S. Dubson, Classes caractéristiques des variétés singulières, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A237–A240.
- [EM] Sam Evens and Ivan Mirković, Fourier transform and the Iwahori-Matsumoto involution, Duke Math. J. 86 (1997), no. 3, 435–464.Mathematical Reviews (MathSciNet): MR98m:22022
Zentralblatt MATH: 0869.22010
Digital Object Identifier: doi:10.1215/S0012-7094-97-08613-0
Project Euclid: euclid.dmj/1077242845 - [GG] H. Garland and I. Grojnowski, Affine Hecke algebras associated to Kac-Moody groups, preprint, q-alg 9508019.
- [GeKZ] I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994.
- [Gi1] V. Ginsburg, Characteristic varieties and vanishing cycles, Invent. Math. 84 (1986), no. 2, 327–402, Part 1.Mathematical Reviews (MathSciNet): MR87j:32030
Zentralblatt MATH: 0598.32013
Digital Object Identifier: doi:10.1007/BF01388811 - [Gi2] Victor Ginzburg, Induction and restriction of character sheaves, I. M. Gel'fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 149–167.
- [Gi3] V. Ginzburg, Perverse sheaves on a loop group and Langlands' duality, alg-geom/9511007.
- [Gr] M. Grinberg, Morse groups in symmetric spaces corresponding to the symmetric group, math. AG 9802091.
- [Ha] Thomas C. Hales, Hyperelliptic curves and harmonic analysis (why harmonic analysis on reductive $p$-adic groups is not elementary), Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), Contemp. Math., vol. 177, Amer. Math. Soc., Providence, RI, 1994, pp. 137–169.
- [HK] R. Hotta and M. Kashiwara, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984), no. 2, 327–358.Mathematical Reviews (MathSciNet): MR87i:22041
Zentralblatt MATH: 0538.22013
Digital Object Identifier: doi:10.1007/BF01388568 - [Hs] Wu-yi Hsiang, Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, “Mir”, Moscow, 1979, (in Russian).
- [Ka1] Masaki Kashiwara, Systems of microdifferential equations, Progress in Mathematics, vol. 34, Birkhäuser Boston Inc., Boston, MA, 1983.
- [Ka2] M. Kashiwara, The flag manifold of Kac-Moody Lie algebra, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 161–190.
- [KaSa] Masaki Kashiwara and Yoshihisa Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), no. 1, 9–36.Mathematical Reviews (MathSciNet): MR99e:17025
Zentralblatt MATH: 0901.17006
Digital Object Identifier: doi:10.1215/S0012-7094-97-08902-X
Project Euclid: euclid.dmj/1077240832 - [KaSc] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990.
- [KaT] Masaki Kashiwara and Toshiyuki Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), no. 1, 21–62.Mathematical Reviews (MathSciNet): MR96j:17016
Zentralblatt MATH: 0829.17020
Digital Object Identifier: doi:10.1215/S0012-7094-95-07702-3
Project Euclid: euclid.dmj/1077286145 - [La] Gérard Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987), no. 2, 309–359.Mathematical Reviews (MathSciNet): MR88g:11086
Zentralblatt MATH: 0662.12013
Digital Object Identifier: doi:10.1215/S0012-7094-87-05418-4
Project Euclid: euclid.dmj/1077305666 - [Le] Lê D ung Tráng, Limites d'espaces tangents et obstruction d'Euler des surfaces, The Euler-Poincaré characteristic (French), Astérisque, vol. 82, Soc. Math. France, Paris, 1981, pp. 45–69.
- [Lu1] G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178.Mathematical Reviews (MathSciNet): MR83c:20059
Zentralblatt MATH: 0473.20029
Digital Object Identifier: doi:10.1016/0001-8708(81)90038-4 - [Lu2] George Lusztig, Singularities, character formulas, and a $q$-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229.
- [Lu3] G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272.Mathematical Reviews (MathSciNet): MR86d:20050
Zentralblatt MATH: 0547.20032
Digital Object Identifier: doi:10.1007/BF01388564 - [Lu4]1 George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237.Mathematical Reviews (MathSciNet): MR87b:20055
Zentralblatt MATH: 0586.20018
Digital Object Identifier: doi:10.1016/0001-8708(85)90034-9 - [Lu4]2 George Lusztig, Character sheaves. II, Adv. in Math. 57 (1985), no. 3, 226–265.Mathematical Reviews (MathSciNet): MR87m:20118a
Zentralblatt MATH: 0586.20019
Digital Object Identifier: doi:10.1016/0001-8708(85)90064-7 - [Lu4]3 George Lusztig, Character sheaves. III, Adv. in Math. 57 (1985), no. 3, 266–315.Mathematical Reviews (MathSciNet): MR87m:20118a
Zentralblatt MATH: 0594.20031
Digital Object Identifier: doi:10.1016/0001-8708(85)90064-7 - [Lu4]4 George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1–63.Mathematical Reviews (MathSciNet): MR87m:20118b
Zentralblatt MATH: 0602.20035
Digital Object Identifier: doi:10.1016/0001-8708(86)90036-8 - [Lu4]5 George Lusztig, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103–155.Mathematical Reviews (MathSciNet): MR87m:20118c
Zentralblatt MATH: 0602.20036
Digital Object Identifier: doi:10.1016/0001-8708(86)90071-X - [M] I. Mirković, Character sheaves on reductive Lie algebras, preprint, 1988.
- [MV1] I. Mirković and K. Vilonen, Characteristic varieties of character sheaves, Invent. Math. 93 (1988), no. 2, 405–418.Mathematical Reviews (MathSciNet): MR89i:20066
Zentralblatt MATH: 0683.22012
Digital Object Identifier: doi:10.1007/BF01394339 - [MV2] I. Mirković and K. Vilonen, Perverse sheaves on loop Grassmannians and Langlands duality, alg. geom /9703010.
- [Ro] W. Rossmann, Invariant eigendistributions on a semisimple Lie algebra and homology classes on the conormal variety. II. Representations of Weyl groups, J. Funct. Anal. 96 (1991), no. 1, 155–193.Mathematical Reviews (MathSciNet): MR92g:22034
Zentralblatt MATH: 0755.22005
Digital Object Identifier: doi:10.1016/0022-1236(91)90077-I - [SV] W. Schmid and K. Vilonen, Weyl group actions on Lagrangian cycles and Rossmann's formula, Noncompact Lie groups and some of their applications (San Antonio, TX, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 429, Kluwer Acad. Publ., Dordrecht, 1994, pp. 243–250.
- [S1] Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980.
- [St] Robert Steinberg, Conjugacy classes in algebraic groups, Springer-Verlag, Berlin, 1974, Lecture Notes in Math., 366.
- [Te] Bernard Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), Soc. Math. France, Paris, 1973, 285–362. Astérisque, Nos. 7 et 8.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Limit Cycle Bifurcations by Perturbing a Compound Loop with a Cusp and a Nilpotent Saddle
Tian, Huanhuan and Han, Maoan, Abstract and Applied Analysis, 2014 - Degenerate affine Grassmannians and loop quivers
Feigin, Evgeny, Finkelberg, Michael, and Reineke, Markus, Kyoto Journal of Mathematics, 2017 - Properties of Nilpotent Orbit Complexification
Crooks, Peter, Journal of Generalized Lie Theory and Applications, 2016
- Limit Cycle Bifurcations by Perturbing a Compound Loop with a Cusp and a Nilpotent Saddle
Tian, Huanhuan and Han, Maoan, Abstract and Applied Analysis, 2014 - Degenerate affine Grassmannians and loop quivers
Feigin, Evgeny, Finkelberg, Michael, and Reineke, Markus, Kyoto Journal of Mathematics, 2017 - Properties of Nilpotent Orbit Complexification
Crooks, Peter, Journal of Generalized Lie Theory and Applications, 2016 - Homotopy nilpotent groups
Biedermann, Georg and Dwyer, William G, Algebraic & Geometric Topology, 2010 - Quiver Grassmannians and degenerate flag varieties
Cerulli Irelli, Giovanni, Feigin, Evgeny, and Reineke, Markus, Algebra & Number Theory, 2012 - Series of Nilpotent Orbits
Landsberg, J. M., Manivel, Laurent, and Westbury, Bruce W., Experimental Mathematics, 2004 - The secant varieties of nilpotent orbits
Omoda, Yasuhiro, Journal of Mathematics of Kyoto University, 2008 - A polytope calculus for semisimple groups
Anderson, Jared E., Duke Mathematical Journal, 2003 - Birational geometry and deformations of nilpotent orbits
Namikawa, Yoshinori, Duke Mathematical Journal, 2008 - The global nilpotent variety is Lagrangian
Ginzburg, Victor, Duke Mathematical Journal, 2001
