## Differential and Integral Equations

- Differential Integral Equations
- Volume 31, Number 9/10 (2018), 715-734.

### Nonexistence of positive solutions for a system of semilinear fractional Laplacian problem

Jingbo Dou and Ye Li

#### Abstract

In this paper, we consider a system of semilinear equations involving the fractional Laplacian in the Euclidean space $\mathbb{R}^n$: \begin{equation*} \begin{cases} (-\Delta)^{\alpha/2}u(x)=f(x_n)v^p(x)\\ (-\Delta)^{\alpha/2}v(x)=g(x_n)u^q(x) \end{cases} \end{equation*} in the subcritical case $1 < p,q\le \frac{n+\alpha}{n-\alpha}$ where $\alpha \in (0,\,2)$. Instead of investigating the above system directly, we discuss its equivalent integral system: \begin{equation*} \begin{cases} u(x)=\int_{\mathbb{R}^n} G_{\infty}(x,y)f(y_n)v^p(y)dy\\ v(y)=\int_{\mathbb{R}^n} G_{\infty}(x,y)g(x_n)u^q(x)dx , \end{cases} \end{equation*} where $G_{\infty}(x, y)$ is the Green's function associated with the fractional Laplacian in $\mathbb{R}^n$. Under natural structure condition on $f$ and $g$, we indicate the nonexistence of the positive solutions to the above integral system according to the method of moving spheres in integral form and the classic Hardy-Littlewood-Sobolev inequality.

#### Article information

**Source**

Differential Integral Equations, Volume 31, Number 9/10 (2018), 715-734.

**Dates**

First available in Project Euclid: 13 June 2018

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1528855437

**Mathematical Reviews number (MathSciNet)**

MR3814564

**Zentralblatt MATH identifier**

06945779

**Subjects**

Primary: 35B53: Liouville theorems, Phragmén-Lindelöf theorems 35B65: Smoothness and regularity of solutions

#### Citation

Dou, Jingbo; Li, Ye. Nonexistence of positive solutions for a system of semilinear fractional Laplacian problem. Differential Integral Equations 31 (2018), no. 9/10, 715--734. https://projecteuclid.org/euclid.die/1528855437