September/October 2015 Self-generated interior blow-up solutions of fractional elliptic equation with absorption
Huyuan Chen, Patricio Felmer, Alexander Quaas
Differential Integral Equations 28(9/10): 839-860 (September/October 2015). DOI: 10.57262/die/1435064542

Abstract

In this paper, we study positive solutions to problems involving the fractional Laplacian \begin{equation} \begin{cases} (-\Delta)^{\alpha} u(x)+|u|^{p-1}u(x)=0,\ \ \ \ & x\in\Omega\setminus\mathcal{C},\\ \ \quad \ u(x)=0,\ & x\in\Omega^c,\\ \displaystyle \lim_{x\in\Omega\setminus\mathcal{C}, \ x\to\mathcal{C}}u(x)=+\infty, \end{cases} \tag*{(0.1)} \end{equation} where $p>1$ and $\Omega$ is an open bounded $C^2$ domain in $\mathbb{R}^N$, $\mathcal{C}\subset \Omega$ is a compact $C^2$ manifold with $N-1$ multiples dimensions and without boundary, the operator $(-\Delta)^{\alpha}$ with $\alpha\in(0,1)$ is the fractional Laplacian. We consider the existence of positive solutions for problem (0.1). Moreover, we further analyze uniqueness, asymptotic behavior and nonexistence.

Citation

Download Citation

Huyuan Chen. Patricio Felmer. Alexander Quaas. "Self-generated interior blow-up solutions of fractional elliptic equation with absorption." Differential Integral Equations 28 (9/10) 839 - 860, September/October 2015. https://doi.org/10.57262/die/1435064542

Information

Published: September/October 2015
First available in Project Euclid: 23 June 2015

zbMATH: 1363.35368
MathSciNet: MR3360722
Digital Object Identifier: 10.57262/die/1435064542

Subjects:
Primary: 35B40 , 35B44 , 35R11

Rights: Copyright © 2015 Khayyam Publishing, Inc.

Vol.28 • No. 9/10 • September/October 2015
Back to Top