Abstract
In this paper, we study positive solutions to problems involving the fractional Laplacian \begin{equation} \begin{cases} (-\Delta)^{\alpha} u(x)+|u|^{p-1}u(x)=0,\ \ \ \ & x\in\Omega\setminus\mathcal{C},\\ \ \quad \ u(x)=0,\ & x\in\Omega^c,\\ \displaystyle \lim_{x\in\Omega\setminus\mathcal{C}, \ x\to\mathcal{C}}u(x)=+\infty, \end{cases} \tag*{(0.1)} \end{equation} where $p>1$ and $\Omega$ is an open bounded $C^2$ domain in $\mathbb{R}^N$, $\mathcal{C}\subset \Omega$ is a compact $C^2$ manifold with $N-1$ multiples dimensions and without boundary, the operator $(-\Delta)^{\alpha}$ with $\alpha\in(0,1)$ is the fractional Laplacian. We consider the existence of positive solutions for problem (0.1). Moreover, we further analyze uniqueness, asymptotic behavior and nonexistence.
Citation
Huyuan Chen. Patricio Felmer. Alexander Quaas. "Self-generated interior blow-up solutions of fractional elliptic equation with absorption." Differential Integral Equations 28 (9/10) 839 - 860, September/October 2015. https://doi.org/10.57262/die/1435064542
Information