Differential and Integral Equations

On a quasilinear parabolic integrodifferential equation

Stig-Olof Londen

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider the nonlinear Volterra integrodifferential equation $$ u_t - a* \text{div}\, h(\,\text{grad}\, u)=a*g, $$ where $x\in \mathbb{R}$, $t\geq 0$ and where the initial function $u(0,x)=w(x)$ is given. The kernel $a$ satisfies $a\in L_{\text{loc}} ^1(\mathbb{R}^{+})$ and the parabolicity condition $\mathfrak{R} \tilde a(\omega )\geq q | \Im \tilde a (\omega) | $ for some $q > 0$ and $\omega \in \mathbb{R}$. We suppose that for some $p> 4$ $$ g\in Y= L^2(\mathbb{R};L^2(\mathbb{R}^n)) \cap L^{p,\infty}(\mathbb{R}; H^{n-1}(\mathbb{R}^n)), $$ where $L^{p,\infty}(\mathbb{R};X)\overset{\rm {def}} \to = \{f : \sup_{T\geq 0}\int ^{T+1}_T \|f\|^p_X \! < \! \infty \}.$ It is shown that for $\|g\|_Y+\|\text{grad\,} w \|_{H^n(\mathbb{R}^n)}$ sufficiently small there exists a solution $u$, defined on $\mathbb{R} \times \mathbb{R}$ and satisfying $u_t,\Delta u\in Y$.

Article information

Source
Differential Integral Equations, Volume 8, Number 2 (1995), 353-369.

Dates
First available in Project Euclid: 20 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.die/1369083474

Mathematical Reviews number (MathSciNet)
MR1296129

Zentralblatt MATH identifier
0814.45005

Subjects
Primary: 35K55: Nonlinear parabolic equations
Secondary: 45K05: Integro-partial differential equations [See also 34K30, 35R09, 35R10, 47G20]

Citation

Londen, Stig-Olof. On a quasilinear parabolic integrodifferential equation. Differential Integral Equations 8 (1995), no. 2, 353--369. https://projecteuclid.org/euclid.die/1369083474


Export citation