1995 Integral solutions of locally Lipschitz continuous functional-differential equations
Janet Dyson, Rosanna Villella-Bressan
Differential Integral Equations 8(5): 1157-1166 (1995). DOI: 10.57262/die/1369056049

Abstract

A local existence and uniqueness result for the functional differential equation in a Banach space $X$ $$ \begin{equation} x'(t)=f(t)x(t)+g(t)x_t, \quad x_0=\phi, \ x(0)=h, \ \{\phi,h\}\in L^1(-R,0;X)\times X \tag{FDE} \end{equation} $$ is obtained, for the case where the operators $f(t)$ satisfy only a local dissipativity condition and the operators $g(t)$ are only locally Lipschitz continuous. This is done by relating (FDE) to the evolution equation in ${L^1(-R,0;X)\times X}$ $$ \begin{equation} u'(t)=A(t)u(t),\quad u(0)=\{\phi , h\}, \tag{E} \end{equation} $$ where $$ \begin{align} &D(A(t)) = \{\{\phi,h\}\in L^1(-R,0;X)\times X ; \ \phi\in W^{1,1}(-R,0;X), h\in D(f(t)),\phi (0)=h\} \\ &(t)\{\phi ,h\} =\{\phi ',\, f(t)h+g(t)\phi\}. \end{align} $$ It is shown that if $u(t)$ is the limit solution of (E), then $u(t)=\{x_t,x(t)\}$, where $x(t)$ is the integral solution

Citation

Download Citation

Janet Dyson. Rosanna Villella-Bressan. "Integral solutions of locally Lipschitz continuous functional-differential equations." Differential Integral Equations 8 (5) 1157 - 1166, 1995. https://doi.org/10.57262/die/1369056049

Information

Published: 1995
First available in Project Euclid: 20 May 2013

zbMATH: 0821.34075
MathSciNet: MR1325551
Digital Object Identifier: 10.57262/die/1369056049

Subjects:
Primary: 34K30
Secondary: 34G20

Rights: Copyright © 1995 Khayyam Publishing, Inc.

JOURNAL ARTICLE
10 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.8 • No. 5 • 1995
Back to Top