Differential and Integral Equations

Asymptotic self-similar global blow-up for a quasilinear heat equation

Victor A. Galaktionov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the asymptotic behavior near finite blow-up time $t = T$ of the solutions to the one-dimensional degenerate quasilinear parabolic equation $$ u_t = (u^\sigma u_x)_x + u^\beta \quad \text{in} \quad \mathbb{R} \times (0,T) ; \quad \sigma>0, \,\, 1<\beta<\sigma+1, $$ with bounded, nonnegative, compactly supported initial data. This parameter range corresponds to global blow-up where $ u(x,t) \to \infty$ as $t \to T^-$ for any $x \in \mathbb{R}$. We prove that the rescaled function $$ f(\xi,t) = (T-t)^{1/(\beta-1)} u(\xi(T-t)^m,t), \quad m = \frac {\beta-(\sigma+1)}{2(\beta-1)} < 0, $$ converges uniformly as $t \to T$ to a unique compactly supported, symmetric self-similar profile $\theta(\xi) \ge 0$ satisfying a nonlinear ordinary differential equation. The proof is based on the intersections comparison (the Sturmian argument) with a two-parametric family of self-similar solutions.

Article information

Differential Integral Equations, Volume 10, Number 3 (1997), 487-497.

First available in Project Euclid: 2 May 2013

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35K65: Degenerate parabolic equations
Secondary: 35K55: Nonlinear parabolic equations


Galaktionov, Victor A. Asymptotic self-similar global blow-up for a quasilinear heat equation. Differential Integral Equations 10 (1997), no. 3, 487--497. https://projecteuclid.org/euclid.die/1367525664

Export citation