## Differential and Integral Equations

- Differential Integral Equations
- Volume 11, Number 6 (1998), 835-845.

### A note on radial symmetry of positive solutions for semilinear elliptic equations in $\mathbb{R}^n$

#### Abstract

Symmetry properties of positive solutions of the equations $$ \Delta u + \phi(|x|)f(u) = 0 $$ in $\mathbb{R}^n$ are considered. We employ the moving plane method based on the maximum principle on unbounded domains to obtain new results on symmetr

#### Article information

**Source**

Differential Integral Equations, Volume 11, Number 6 (1998), 835-845.

**Dates**

First available in Project Euclid: 30 April 2013

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1367329479

**Mathematical Reviews number (MathSciNet)**

MR1659264

**Zentralblatt MATH identifier**

1074.35506

**Subjects**

Primary: 35J60: Nonlinear elliptic equations

Secondary: 35B05: Oscillation, zeros of solutions, mean value theorems, etc.

#### Citation

Naito, Yūki. A note on radial symmetry of positive solutions for semilinear elliptic equations in $\mathbb{R}^n$. Differential Integral Equations 11 (1998), no. 6, 835--845. https://projecteuclid.org/euclid.die/1367329479