## Differential and Integral Equations

- Differential Integral Equations
- Volume 14, Number 2 (2001), 141-158.

### Singular ground states for the scalar curvature equation in $\mathbbR^N$

Flaviano Battelli and Russell Johnson

#### Abstract

We use dynamical-systems techniques to study the positive solutions of the scalar curvature equation in $R^n$, $n \geq 3$. In certain cases we prove the existence of a Cantor-like set of singular ground states with slow decay.

#### Article information

**Source**

Differential Integral Equations, Volume 14, Number 2 (2001), 141-158.

**Dates**

First available in Project Euclid: 21 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1356123349

**Mathematical Reviews number (MathSciNet)**

MR1797383

**Zentralblatt MATH identifier**

1161.35379

**Subjects**

Primary: 35J60: Nonlinear elliptic equations

Secondary: 35B05: Oscillation, zeros of solutions, mean value theorems, etc. 35B33: Critical exponents 35C99: None of the above, but in this section

#### Citation

Battelli, Flaviano; Johnson, Russell. Singular ground states for the scalar curvature equation in $\mathbbR^N$. Differential Integral Equations 14 (2001), no. 2, 141--158. https://projecteuclid.org/euclid.die/1356123349