Differential and Integral Equations

Damped wave equation with super critical nonlinearities

Nakao Hayashi, Elena I. Kaikina, and Pavel I. Naumkin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study global existence in time of small solutions to the Cauchy problem for the nonlinear damped wave equation \begin{equation} \left\{ \begin{array}{c} \partial _{t}^{2}u+\partial _{t}u-\Delta u=\mathcal{N}\left( u\right) ,\quad x\in \mathbf{R}^{n},\text{ }t>0, \\ u(0,x)=\varepsilon u_{0}\left( x\right) ,\partial _{t}u(0,x)=\varepsilon u_{1}\left( x\right) , \quad x\in \mathbf{R}^{n}, \end{array} \right. \tag*{(0.1)} \end{equation} where $\varepsilon >0$. The nonlinearity $\mathcal{N}\left( u\right) \in \mathbf{C}^{k}\left( \mathbf{R}\right) $ satisfies the estimate \begin{equation*} \Big | \frac{d^{j}}{du^{j}}\mathcal{N}\left( u\right) \Big | \leq C\big | u\big | ^{\rho -j}, \quad 0\leq j\leq k\leq \rho . \end{equation*} The power $\rho >1+\frac{2}{n}$ is considered as super critical for large time. We assume that the initial data \begin{equation*} u_{0}\in \mathbf{H}^{\alpha ,0}\cap \mathbf{H}^{0,\delta },\text{ }u_{1}\in \mathbf{H}^{\alpha -1,0}\cap \mathbf{H}^{0,\delta }, \end{equation*} where $\delta >\frac{n}{2},$ $\left[ \alpha \right] \leq \rho ,\alpha \geq \frac{n}{2}-\frac{1}{\rho -1}$ for $n\geq 2$, and $\alpha \geq \frac{1}{2}- \frac{1}{2\left( \rho -1\right) }$ for $n=1.$ Weighted Sobolev spaces are \begin{equation*} \mathbf{H}^{l,m}= \Big \{ \phi \in \mathbf{L}^{2}; \big \| \left\langle x\right\rangle ^{m}\left\langle i\partial _{x}\right\rangle ^{l}\phi \left( x\right) \big \| _{\mathbf{L}^{2}}s < \infty \Big \} , \end{equation*} where $\left\langle x\right\rangle =\sqrt{1+x^{2}}.$ Then we prove that there exists a small $\varepsilon _{0}>0$ such that for any $\varepsilon \in \left( 0,\varepsilon _{0}\right] $ there exists a unique global solution $ u\in \mathbf{C}\left( \left[ 0,\infty \right) ;\mathbf{H}^{\alpha ,0}\cap \mathbf{H}^{0,\delta }\right) $ for the Cauchy problem (0.1) and solutions satisfy the time decay property \begin{equation*} \big \| u ( t ) \big \| _{\mathbf{L}^{p}}\leq Ct^{-\frac{n}{2 } ( 1-\frac{1}{p} ) } \end{equation*} for all $t>0$, where $2\leq p\leq $ $\frac{2n}{n-2\alpha }$ if $\alpha s < \frac{n}{2},$ $2\leq ps <$ $\infty $ if $\alpha =\frac{n}{2},$ and $2\leq p\leq $ $\infty $ if $\alpha \gt\frac{n}{2}.$

Article information

Differential Integral Equations, Volume 17, Number 5-6 (2004), 637-652.

First available in Project Euclid: 21 December 2012

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35L70: Nonlinear second-order hyperbolic equations
Secondary: 35B40: Asymptotic behavior of solutions 35L15: Initial value problems for second-order hyperbolic equations 35Q35: PDEs in connection with fluid mechanics 35R10: Partial functional-differential equations


Hayashi, Nakao; Kaikina, Elena I.; Naumkin, Pavel I. Damped wave equation with super critical nonlinearities. Differential Integral Equations 17 (2004), no. 5-6, 637--652. https://projecteuclid.org/euclid.die/1356060352

Export citation