2004 Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains
M. M. Cavalcanti, V. N. Domingos Cavalcanti, T. F. Ma
Differential Integral Equations 17(5-6): 495-510 (2004). DOI: 10.57262/die/1356060344

Abstract

The viscoelastic Euler-Bernoulli equation with nonlinear and nonlocal damping $$u_{tt}+\Delta^2u-\int_0^tg(t-\tau )\Delta^2u(\tau )\,d\tau +a(t )u_t=0\,\,\,\hbox{in}\,\,\,\Omega\times {\bf R}^{+},$$ where $a(t)=M\left(\int_{\Omega}\left|\nabla u(x,t)\right|^2dx\right )$, is considered in bounded or unbounded domains $\Omega$ of ${\bf R}^ n$. The existence of global solutions and decay rates of the energy are proved.

Citation

Download Citation

M. M. Cavalcanti. V. N. Domingos Cavalcanti. T. F. Ma. "Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains." Differential Integral Equations 17 (5-6) 495 - 510, 2004. https://doi.org/10.57262/die/1356060344

Information

Published: 2004
First available in Project Euclid: 21 December 2012

zbMATH: 1174.74320
MathSciNet: MR2054931
Digital Object Identifier: 10.57262/die/1356060344

Subjects:
Primary: 74D05
Secondary: 35B40 , 35R10 , 45K05 , 74H40 , 74K10

Rights: Copyright © 2004 Khayyam Publishing, Inc.

Vol.17 • No. 5-6 • 2004
Back to Top