Differential and Integral Equations

Rough solutions of a Schrödinger-Benjamin-Ono system

Hartmut Pecher

Full-text: Open access

Abstract

The Cauchy problem for a coupled Schrödinger and Benjamin-Ono system is shown to be globally well posed for a class of data without finite energy. The proof uses the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao.

Article information

Source
Differential Integral Equations, Volume 19, Number 5 (2006), 517-535.

Dates
First available in Project Euclid: 21 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.die/1356050440

Mathematical Reviews number (MathSciNet)
MR2235139

Zentralblatt MATH identifier
1212.35456

Subjects
Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]
Secondary: 35B30: Dependence of solutions on initial and boundary data, parameters [See also 37Cxx] 35Q53: KdV-like equations (Korteweg-de Vries) [See also 37K10]

Citation

Pecher, Hartmut. Rough solutions of a Schrödinger-Benjamin-Ono system. Differential Integral Equations 19 (2006), no. 5, 517--535. https://projecteuclid.org/euclid.die/1356050440


Export citation