2006 An optimization problem for the first Steklov eigenvalue of a nonlinear problem
Leandro Del Pezzo, Julián Fernández Bonder, Julio D. Rossi
Differential Integral Equations 19(9): 1035-1046 (2006). DOI: 10.57262/die/1356050331

Abstract

In this paper we study the first (nonlinear) Steklov eigenvalue, $\lambda$, of the following problem: $-\Delta_{p}u + |u|^{p-2}u + \alpha\phi|u|^{p-2}u = 0$ in a bounded smooth domain $\Omega$ with $|\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = \lambda |u|^{p-2}u$ on the boundary $ \partial\Omega$. We analyze the dependence of this first eigenvalue with respect to the weight $\phi$ and with respect to the parameter $\alpha$. We prove that for fixed $\alpha$ there exists an optimal $\phi_\alpha$ that minimizes $\lambda$ in the class of uniformly bounded measurable functions with fixed integral. Next, we study the limit of these minima as the parameter $\alpha$ goes to infinity and we find that the limit is the first Steklov eigenvalue in the domain with a hole where the eigenfunctions vanish.

Citation

Download Citation

Leandro Del Pezzo. Julián Fernández Bonder. Julio D. Rossi. "An optimization problem for the first Steklov eigenvalue of a nonlinear problem." Differential Integral Equations 19 (9) 1035 - 1046, 2006. https://doi.org/10.57262/die/1356050331

Information

Published: 2006
First available in Project Euclid: 21 December 2012

zbMATH: 1212.35339
MathSciNet: MR2262095
Digital Object Identifier: 10.57262/die/1356050331

Subjects:
Primary: 35P30
Secondary: 35J20 , 35J60 , 35J65 , 47J30 , 49R50

Rights: Copyright © 2006 Khayyam Publishing, Inc.

JOURNAL ARTICLE
12 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.19 • No. 9 • 2006
Back to Top