Differential and Integral Equations

Solutions for a nonhomogeneous nonlinear Schroedinger equation with double power nonlinearity

M. Ghimenti and A. M. Micheletti

Full-text: Open access

Abstract

We consider the problem $- \Delta u+V(x)u=f^{\prime}(u)+g(x)$ in $\mathbb R^N$, under the assumption $\lim_{x\rightarrow\infty}V(x)=0$, and with the nonlinear term $f$ with a double power behavior. We prove the existence two solutions when $g$ is sufficiently small and $V < 0$.

Article information

Source
Differential Integral Equations, Volume 20, Number 10 (2007), 1131-1152.

Dates
First available in Project Euclid: 20 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.die/1356039299

Mathematical Reviews number (MathSciNet)
MR2365205

Zentralblatt MATH identifier
1212.35114

Subjects
Primary: 35J60: Nonlinear elliptic equations
Secondary: 35D05 35J20: Variational methods for second-order elliptic equations

Citation

Ghimenti, M.; Micheletti, A. M. Solutions for a nonhomogeneous nonlinear Schroedinger equation with double power nonlinearity. Differential Integral Equations 20 (2007), no. 10, 1131--1152. https://projecteuclid.org/euclid.die/1356039299


Export citation