## Differential and Integral Equations

- Differential Integral Equations
- Volume 20, Number 10 (2007), 1131-1152.

### Solutions for a nonhomogeneous nonlinear Schroedinger equation with double power nonlinearity

M. Ghimenti and A. M. Micheletti

#### Abstract

We consider the problem $- \Delta u+V(x)u=f^{\prime}(u)+g(x)$ in $\mathbb R^N$, under
the assumption $\lim_{x\rightarrow\infty}V(x)=0$, and with the nonlinear term $f$ with a
*double power* behavior. We prove the existence two solutions when $g$ is
sufficiently small and $V < 0$.

#### Article information

**Source**

Differential Integral Equations, Volume 20, Number 10 (2007), 1131-1152.

**Dates**

First available in Project Euclid: 20 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1356039299

**Mathematical Reviews number (MathSciNet)**

MR2365205

**Zentralblatt MATH identifier**

1212.35114

**Subjects**

Primary: 35J60: Nonlinear elliptic equations

Secondary: 35D05 35J20: Variational methods for second-order elliptic equations

#### Citation

Ghimenti, M.; Micheletti, A. M. Solutions for a nonhomogeneous nonlinear Schroedinger equation with double power nonlinearity. Differential Integral Equations 20 (2007), no. 10, 1131--1152. https://projecteuclid.org/euclid.die/1356039299