## Differential and Integral Equations

- Differential Integral Equations
- Volume 22, Number 7/8 (2009), 669-678.

### Multiple positive solutions for a class of $p - q$-Laplacian systems with multiple parameters and combined nonlinear effects

Jaffar Ali and R. Shivaji

#### Abstract

In this work, we prove a multiplicity result for a class of quasilinear elliptic equation involving the subcritical Hardy-Sobolev exponent, and singularities both in the operator and in the non-linearity. Precisely, we study the problem $$ \begin{cases} {-\operatorname{div} \big[ |x_N|^{-ap} | \nabla u |^{p-2} \nabla u \big] + \lambda|x_N|^{-(a+1-c)p} |u|^{p-2}u } & \\ \ \ \ = |x_N|^{-bq} |u|^{q-2} u + f & \mbox{in }\mathbb R_+^N \\ {u} = 0 &\mbox{on } \partial \mathbb R_+^N, \end{cases} $$ where we denote $ x=(x_1,x_2,\dots,x_N)=(x',x_N) \in \mathbb R^{N-1}\times \mathbb R $, $ \mathbb R_+^N= \left\{ x \in \mathbb R^N : x_N > 0 \right\} $, $ \partial \mathbb R_+^N= \left\{ x \in \mathbb R^N : x_N = 0 \right\} $, and we consider $ 1 < p < N $, $ 0 \leqslant a < (N-p)/p $, $ a < b < a+1 $, $c=0 $, $ d \equiv a+1-b $, $ q = q(a,b) \equiv Np/(N - pd) $ (the Hardy-Sobolev critical exponent), $ \lambda \in \mathbb R $ is a parameter, and $ f \in \big( L_b^q(\mathbb R_+^N) \big)^{*} $, the dual space of the weighted Lebesgue space. We prove an existence result for the case $ f \equiv 0 $ and a multiplicity result in the case $ \lambda = 0 $ for non-autonomous perturbations~$ f \not\equiv 0.$

#### Article information

**Source**

Differential Integral Equations Volume 22, Number 7/8 (2009), 669-678.

**Dates**

First available in Project Euclid: 20 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1356019543

**Mathematical Reviews number (MathSciNet)**

MR2532116

**Zentralblatt MATH identifier**

1240.35153

**Subjects**

Primary: 35J57: Boundary value problems for second-order elliptic systems

Secondary: 35J60: Nonlinear elliptic equations 35J62: Quasilinear elliptic equations 35J70: Degenerate elliptic equations 47J15: Abstract bifurcation theory [See also 34C23, 37Gxx, 58E07, 58E09]

#### Citation

Ali, Jaffar; Shivaji, R. Multiple positive solutions for a class of $p - q$-Laplacian systems with multiple parameters and combined nonlinear effects. Differential Integral Equations 22 (2009), no. 7/8, 669--678. https://projecteuclid.org/euclid.die/1356019543.