## Differential and Integral Equations

- Differential Integral Equations
- Volume 23, Number 3/4 (2010), 201-222.

### Multiple positive solutions for the $N$-Laplace equation with nonlinear Neumann boundary conditions

J. Giacomoni, S. Prashanth, and K. Sreenadh

#### Abstract

Let $ {\Omega}\subset {\mathbb R}^N$ be a bounded domain with $C^2$ boundary. Let $u\in W^{1,N}(\Omega)$ be a weak solution of the following problem: $$(P_{\mu,{\lambda}})\hspace{1cm} \left \{ \begin{array}{cllll} \left . \begin{array}{rllll} -\text{div}(|{\nabla} u|^{N-2}{\nabla} u) +|u|^{N-2}u & =& \mu h(u) e^{u^{\alpha}}\\ u&<& 0 \end{array} \right \} \;\; \text{in} \; {\Omega}, \\ \hspace{2.2cm}|{\nabla} u|^{N-2}\frac{{\partial} u}{{\partial} \nu}\; =\;\; {\lambda} \psi u^q \;\;\text{on}\;\; \partial {\Omega}, \end{array} \right . $$ where ${\alpha}\in (0,\frac{N}{N-1}], {\lambda}, \mu >0, q\in [0,N-1)$ and $\psi$ is a positive Hölder continuous function on $\overline{ {\Omega}}$. Here, $h(u)$ is a ``suitable" perturbation of $e^{u^\alpha}$ as $u \to \infty$ (see assumptions $(\mathbf{A1})-(\mathbf{A5})$ in Section 1). In this article, we show that there exists a region $\Re \subset \{(\mu,{\lambda}): \mu,{\lambda}>0\}$ bounded by the graph of a map $ {\Lambda}$ such that $(P_{\mu,{\lambda}})$ admits at least two solutions for all $(\mu,{\lambda}) \in \Re$, at least one solution for any $(\mu,{\lambda}) \in \partial \Re$ and no solution for $(\mu,{\lambda})$ outside $\overline{\Re}$.

#### Article information

**Source**

Differential Integral Equations, Volume 23, Number 3/4 (2010), 201-222.

**Dates**

First available in Project Euclid: 20 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1356019314

**Mathematical Reviews number (MathSciNet)**

MR2588472

**Zentralblatt MATH identifier**

1240.35174

**Subjects**

Primary: 34B15: Nonlinear boundary value problems 35J60: Nonlinear elliptic equations

#### Citation

Giacomoni, J.; Prashanth, S.; Sreenadh, K. Multiple positive solutions for the $N$-Laplace equation with nonlinear Neumann boundary conditions. Differential Integral Equations 23 (2010), no. 3/4, 201--222. https://projecteuclid.org/euclid.die/1356019314