## Differential and Integral Equations

- Differential Integral Equations
- Volume 23, Number 7/8 (2010), 635-657.

### Global existence of solutions for a system of nonlinear damped wave equations

Takayoshi Ogawa and Hiroshi Takeda

#### Abstract

We consider the Cauchy problem of the semilinear damped wave system: \begin{equation} \notag \begin{cases} \partial_{t}^2 u_{j} - \Delta u_{j} + \partial_{t} u_{j} = F_{j}(u), & t > 0, \quad x\in \mathbb R^{n},\\ u_{j}(0,x)=a_{j}(x),\quad \partial_{t} u_{j}(0,x) = b_{j}(x), & x\in \mathbb R^{n}, \end{cases} \end{equation} where $m \ge 2$ and $j = 1$, $\cdots$, $m$. We show the existence of a global-in-time solution for a small initial data under a sharp condition on the nonlinear exponents, which is a natural extension of the results for the single nonlinear damped wave equations ([28], [30]). The proof is based on $L^{p}$-$L^{q}$ type estimates of the fundamental solutions of the linear damped wave equations ([9]) and systematic choice of the function scale to adjust the nonlinear growth order.

#### Article information

**Source**

Differential Integral Equations, Volume 23, Number 7/8 (2010), 635-657.

**Dates**

First available in Project Euclid: 20 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1356019188

**Mathematical Reviews number (MathSciNet)**

MR2654262

**Zentralblatt MATH identifier**

1240.35339

**Subjects**

Primary: 35L70: Nonlinear second-order hyperbolic equations 35L15: Initial value problems for second-order hyperbolic equations

#### Citation

Ogawa, Takayoshi; Takeda, Hiroshi. Global existence of solutions for a system of nonlinear damped wave equations. Differential Integral Equations 23 (2010), no. 7/8, 635--657. https://projecteuclid.org/euclid.die/1356019188