## Differential and Integral Equations

- Differential Integral Equations
- Volume 24, Number 1/2 (2011), 135-158.

### Hardy-Sobolev type equations for $p$-Laplacian, $1<p<2$, in bounded domain

#### Abstract

We study quasilinear degenerate singular elliptic equations of the type $ -\Delta_p u = \frac{u^{p^*(s)-1}}{|y|^t} $ in a smooth bounded domain $\Omega$ in ${{\mathbb R}^{N}}={{\mathbb R}^{k}}\times{\mathbb R}^{N-k}$, $x=(y,z)\in{{\mathbb R}^{k}}\times{\mathbb R}^{N-k}$, $2 \leq k<N$ and $N\geq 3$, $1<p<2$, $0\leq s\leq p$, $0\leq t\leq s$ and $p^*(s)=\frac{p(n-s)}{n-p}$. We study existence of solutions for $t<s$, non-existence in a star-shaped domain for $t=s$ and $s<k\big(\frac{p-1}{p}\big)$. We also show that the solution is in $C^{1, {\alpha}}(\Omega)$ for some $0< {\alpha}<1$ provided $t<\frac{k}{N}\big(\frac{p-1}{p}\big)$. The regularity of the solution can be improved to the class $W^{2,p}(\Omega)$ when $t<k(\frac{p-1}{p})$. We also study some properties of the set of degeneracy in a cylindrically symmetric domain using the method of symmetry.

#### Article information

**Source**

Differential Integral Equations, Volume 24, Number 1/2 (2011), 135-158.

**Dates**

First available in Project Euclid: 20 December 2012

**Permanent link to this document**

https://projecteuclid.org/euclid.die/1356019048

**Mathematical Reviews number (MathSciNet)**

MR2759355

**Zentralblatt MATH identifier**

1240.35207

**Subjects**

Primary: 35J60: Nonlinear elliptic equations 35J70: Degenerate elliptic equations 35J75: Singular elliptic equations 35B09: Positive solutions 35B65: Smoothness and regularity of solutions

#### Citation

Bhakta, M.; Biswas, A. Hardy-Sobolev type equations for $p$-Laplacian, $1<p<2$, in bounded domain. Differential Integral Equations 24 (2011), no. 1/2, 135--158. https://projecteuclid.org/euclid.die/1356019048