## Communications in Mathematical Physics

- Comm. Math. Phys.
- Volume 141, Number 2 (1991), 381-411.

### Fusion rings and geometry

#### Article information

**Source**

Comm. Math. Phys., Volume 141, Number 2 (1991), 381-411.

**Dates**

First available in Project Euclid: 28 December 2004

**Permanent link to this document**

https://projecteuclid.org/euclid.cmp/1104248305

**Mathematical Reviews number (MathSciNet)**

MR1133272

**Zentralblatt MATH identifier**

0752.17033

**Subjects**

Primary: 81T40: Two-dimensional field theories, conformal field theories, etc.

Secondary: 11F22: Relationship to Lie algebras and finite simple groups 14M15: Grassmannians, Schubert varieties, flag manifolds [See also 32M10, 51M35] 17B81: Applications to physics 81R10: Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, $W$-algebras and other current algebras and their representations [See also 17B65, 17B67, 22E65, 22E67, 22E70]

#### Citation

Gepner, Doron. Fusion rings and geometry. Comm. Math. Phys. 141 (1991), no. 2, 381--411. https://projecteuclid.org/euclid.cmp/1104248305