Communications in Mathematical Physics

Optimal bounds for ratios of eigenvalues of one-dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials

Mark S. Ashbaugh and Rafael D. Benguria

Full-text: Open access

Article information

Source
Comm. Math. Phys., Volume 124, Number 3 (1989), 403-415.

Dates
First available in Project Euclid: 27 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.cmp/1104179208

Mathematical Reviews number (MathSciNet)
MR1012632

Zentralblatt MATH identifier
0677.34027

Subjects
Primary: 34L15: Eigenvalues, estimation of eigenvalues, upper and lower bounds
Secondary: 34B24: Sturm-Liouville theory [See also 34Lxx] 34L40: Particular operators (Dirac, one-dimensional Schrödinger, etc.) 81Q10: Selfadjoint operator theory in quantum theory, including spectral analysis 81U05: $2$-body potential scattering theory [See also 34E20 for WKB methods]

Citation

Ashbaugh, Mark S.; Benguria, Rafael D. Optimal bounds for ratios of eigenvalues of one-dimensional Schrödinger operators with Dirichlet boundary conditions and positive potentials. Comm. Math. Phys. 124 (1989), no. 3, 403--415. https://projecteuclid.org/euclid.cmp/1104179208


Export citation