Communications in Mathematical Physics
- Comm. Math. Phys.
- Volume 121, Number 3 (1989), 351-399.
Quantum field theory and the Jones polynomial
Article information
Source
Comm. Math. Phys., Volume 121, Number 3 (1989), 351-399.
Dates
First available in Project Euclid: 27 December 2004
Permanent link to this document
https://projecteuclid.org/euclid.cmp/1104178138
Mathematical Reviews number (MathSciNet)
MR0990772
Zentralblatt MATH identifier
0667.57005
Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 17B67: Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 57N10: Topology of general 3-manifolds [See also 57Mxx] 58D15: Manifolds of mappings [See also 46T10, 54C35] 58D30: Applications (in quantum mechanics (Feynman path integrals), relativity, fluid dynamics, etc.) 81E40
Citation
Witten, Edward. Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121 (1989), no. 3, 351--399. https://projecteuclid.org/euclid.cmp/1104178138

