## Communications in Mathematical Physics

- Comm. Math. Phys.
- Volume 107, Number 4 (1986), 587-609.

### On the existence of $n$-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure

#### Article information

**Source**

Comm. Math. Phys., Volume 107, Number 4 (1986), 587-609.

**Dates**

First available in Project Euclid: 26 December 2004

**Permanent link to this document**

https://projecteuclid.org/euclid.cmp/1104116232

**Mathematical Reviews number (MathSciNet)**

MR0868737

**Zentralblatt MATH identifier**

0659.53056

**Subjects**

Primary: 83C05: Einstein's equations (general structure, canonical formalism, Cauchy problems)

Secondary: 53C50: Lorentz manifolds, manifolds with indefinite metrics 58D25: Equations in function spaces; evolution equations [See also 34Gxx, 35K90, 35L90, 35R15, 37Lxx, 47Jxx] 83C20: Classes of solutions; algebraically special solutions, metrics with symmetries

#### Citation

Friedrich, Helmut. On the existence of $n$-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure. Comm. Math. Phys. 107 (1986), no. 4, 587--609. https://projecteuclid.org/euclid.cmp/1104116232